
2021 CONTRAST LABS

OPEN-SOURCE SECURITY
~ REPORT

Trends and Best Practices From Real-world Software Supply Chains

TABLE OF CONTENTS

@ﬂ FOREWORD POT

EXECUTIVE SUMMARY P03

e INFOGRAPHIC: Key Findings

INTRODUCTION P07
LIBRARY COUNTS: INDICATIVE OF COMPLEXITY, P10
NOT NECESSARILY RISK
RISK LAYER 1: ACTIVE AND INACTIVE LIBRARIES P16
RISK LAYER 2: ACTIVE AND INACTIVE LIBRARY CLASSES P22
RISK LAYER 3: LIBRARY AGE P28
RISK LAYER 4: VULNERABILITIES IN LIBRARIES P31
RISK LAYER 5: LICENSING RISK P36

CONCLUSION P40

2021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

01 |

Already an accelerating trend before the world-changing events of 2020, digital transformation is now
moving at breakneck speed to bring radical change to the way organizations conduct business.
Applications are at the heart of this phenomenon, delivering new experiences for both business

customers and consumers while improving operational efficiency and creating new revenue streams.

Somewhat hidden in this process are millions of software developers, who have honed their craft to

the point that it functions as a fast and efficient “software factory,” with extensive automation and
standardization of processes across the software development life cycle (SDLC). Using methodologies like
Agile and DevOps, they have accelerated release cycles while improving quality. One practice that
contributes to this efficiency is code reuse, which includes open-source libraries and frameworks. The
typical application today contains dozens and quite often hundreds of libraries, many of which provide

indispensable core functionality and help propel digital transformation.

But the efficiency brought about by the extensive use of libraries is not without risk. The increased reliance
on applications has not escaped the attention of cyber criminals, who have shifted more attention to this
attack vector. The massive SolarWinds attack that was revealed in late 2020 is a stark reminder of the

vulnerability of the software supply chain and the risk it poses.

Recognizing the importance of securing the software supply chain, Contrast Labs is pleased to announce
the publication of research findings regarding open-source utilization and risk. The analysis is based on
telemetry from tens of thousands of real-world applications and application programming interfaces (APIs)
that are assessed and protected by Contrast solutions. This data comes from real-world examples of the

software supply chain.

The report identifies five areas of risk around open-source libraries and frameworks: active and inactive
libraries, active and inactive library classes, library age, open-source vulnerabilities, and licensing risk.
Each of these areas brings risk to organizations that can hamper operational efficiency, the ability to

prevent and thwart attacks by cyber criminals, and avoid legal problems regarding software ownership.

2021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

01

We frequently assert that not every software vulnerability should be treated the same, and this is
especially true with open-source software. Indeed, our data shows that 62% of libraries present in an
application are not used at all by the software, and thus they present no risk. But the issue is deeper: Of
libraries that are used, only 31% of the classes in those libraries are invoked by the application. The truth
is, while third-party libraries comprise the majority of an application in terms of lines of code, less than
one-tenth of the code that actually runs comes from open source. The rest comes from custom code
written by developers. Unfortunately, legacy software composition analysis (SCA) tools focus on everything

equally, and fail to identify what really matters. This ratchets up risk while increasing inefficiencies.

The result is that a huge share of the vulnerabilities found in open-source code in a typical application
are inactive and pose no risk. Further, as traditional SCA tools identify all vulnerabilities and view them
the same, this translates into a tremendous amount of wasted time. This operational inefficiency is
compounded by the fact that not all vulnerabilities found in active libraries and classes should be treated
the same—only a fraction pose serious risk. The lack of comprehensive observability also impacts the
ability to track and manage open-source licensing: A surprising percentage of applications have

open-source licensing exposures.

Open-source software is firmly embedded in every organization's software stack. Each company must
adapt its software factory with processes and technologies to identify software supply chain issues and
prevent them from exposing the businesses to attack. Our goal with the “2021 Open-source Security
Report” is to help organizations understand the layers of risk presented by open-source software, and the
strategies they can employ to mitigate that risk. Taking these steps can help organizations to take
advantage of the full potential that modern software offers to organizations in all industries, while

minimizing risk.

Sincerely,

2021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

02 | EXECUTIVE SUMMARY

As open-source libraries continue to increase in importance to developers in producing business-critical
software against aggressive deadlines, such libraries proliferate in number and in complexity. The 2021
Contrast Labs Open-source Security Report uses telemetry from actual applications protected by Contrast
0SS and Contrast Assess to reveal key trends about library usage, vulnerabilities, and best practices from

thousands of real-world software supply chains. Key findings include:

e \While the average application contains 118 libraries, the more important metric is that only 38% of
libraries are active—that is, used by the application. Further, only 31% of library classes within
active libraries are actually ever invoked by a given piece of software. While libraries comprise a large
percentage of the lines of code present in an application, only a tiny fraction of that code is actually

used by the application.

e The average library uses a version that is 2.5 years old. This increases the risk of unaddressed

vulnerabilities while expanding the amount of work required when an update is finally done.

e The average Java application has 50 open-source library vulnerabilities, and the odds are 16%

that a given Java library in an application will have a vulnerability.

e Software composition analysis (SCA) tools, which do not differentiate between vulnerabilities in
inactive libraries and classes and active ones, return false positives when they identify a CVE that
poses no risk. The false positivity rate is 23% for Java applications, 13% for .NET applications,

and 69% for Node applications.
e High-risk licenses are present in 69% of Java applications and 33% of Node applications. These

expose organizations to significant legal risk by legally obligating the license holder to make any

resulting software open source.

2021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

Given recent vulnerability exposures and attacks of the software supply chain, it is imperative that
organizations pay much closer attention to the open-source code used in their applications. There are
significant risks in open-source libraries, but identifying and remediating the ones that matter requires a
different approach, one that provides a comprehensive picture of active and inactive libraries and classes,
library age, vulnerabilities, and licensing issues. Legacy SCA and application security tools simply do not
provide the level of accuracy and observability required—especially when the C-suite and boards of

directors are pressing for greater business acceleration.

2021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

04

KEY FINDINGS

The average application contains open-source libraries.

Only of libraries present in applications are used;
Node applications are the lowest of all languages with only

Only of classes are invoked by active Java libraries.

The average library uses a version thatis years old.

2021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT 05

KEY FINDINGS
OPEN-SOURCE VULNERABILITIES

5 0 The average Java application has 50 open-source vulnerabilities.

0 Java libraries in applications have a 16% chance of having a
0 Critical or Major vulnerability.

0 The odds of an application having a vulnerability in a Java library
4 4 /0 increase from 7% to 44% as the library age goes from 1 year to 4 years..

FALSE POSITIVITY RATES FOR LEGACY SCA TOOLS:

FOR JAVA — 23% o
FOR .NET — 13%
FORNODE — 69%

LICENSING
6 9 0/ I 69% of Java applications and 33% of Node applications
0 include a library with a high-risk license.

9 9 % 99% of organizations have at least one high-risk Java license.

06

The discipline of software development has dramatically improved its speed and efficiency in recent years.
Methodologies like Agile and DevOps leverage principles from manufacturing to streamline and automate
as much of the software development life cycle (SDLC) as possible. These advances not only enable
software to be developed much more quickly than a decade ago but have also improved the quality of the
software from both a back end and user experience perspective. The transformation has been so

complete that the term “software factory” has recently been resurrected to describe the operation.’

Like a well-run manufacturing floor, today’s software factory uses a unified team for every aspect of the
SDLC, from development to operations. The software factory team uses clear policies, automated
processes, and standardized development tools. And importantly, they leverage software reuse as a
deliberate strategy. While some of that repurposed code comes from internal repositories, much of it

comes from open-source libraries.

The efficiency and effectiveness gains from this approach are real. A recent McKinsey report found that
open-source adoption was the biggest differentiator for organizations in the top quartile of their Developer
Velocity Index (DVI).? As the authors of the study note, “We found that building an open-source culture is

about more than using open-source software within the code; it extends to encouraging contribution and

participation in the open-source community as well as adopting a similar approach to how code is shared

internally—that is, strong InnerSource adoption.”

SECURITY CHALLENGES FOR OPEN-SOURCE LIBRARIES AND FRAMEWORKS

But this increase in efficiency is not without cost. The massive SolarWinds application attack* is a
reminder that the software factory is a target for cyber criminals. The 2020 Verizon Data Breach
Investigations Report found that 43% of data breaches this past year were the result of a web application
vulnerability—a figure that more than doubled over the previous year.®> And the number of open-source
vulnerabilities logged into the Common Vulnerabilities and Exposures (CVE) database has increased

dramatically in recent years.

Another security challenge involves the increasing complexity of library use in applications. Imagine a
library with several functions—A, B, and C. This library relies on numerous other libraries (called
“transitive dependencies”) to implement those functions. A developer wanting to use function A will

inadvertently include all the libraries that support functions B and C in the application.

These complex dependency trees make developers reluctant to remove or update old libraries, fearful that
doing so will have unforeseen downstream consequences. In other cases, they waste time by updating

libraries that are not used by the software in any way.

INADEQUACIES OF LEGACY OPEN-SOURCE SECURITY APPROACHES

Despite these increasing complications, most organizations still employ open-source security strategies
that were developed many years ago, when open-source software was less complex, comprised a smaller
part of applications, and was a part of a more deliberate development process. Legacy software
composition analysis (SCA) tools depend on periodic static scans of either built applications or the build
files in code repositories. These scans are disruptive to modern native development processes. Worse,
they show data from just a specific point in time rather than providing continuous analysis. The scans are

out of date the first time there is a library change or update.

But perhaps most detrimental is legacy SCA tools’ lack of visibility into which libraries and classes are

actually used by the software, how they are used, and what version is in use. As a result, all vulnerabilities

of each severity level are presented as equally risky, when some pose no risk. Just as false positives from
application security scanning tools cause developers and security experts to waste time on items that pose no
risk, a lack of visibility into software dependencies creates false positives when SCA tools identify CVES in code
that is not used by the software. Both types of false positives waste an organization’s staff time and potentially

can delay the remediation of vulnerabilities that truly pose risk.

As the findings of this report clearly demonstrate, full observability of the all open-source library content in each

application is a necessity for ensuring the security of applications for employees, partners, and customers.

METHODOLOGY OF THIS STUDY
The data in this report is based on aggregate telemetry collected by Contrast Labs from Java, .NET, and Node
applications covered by Contrast OSS and Contrast Assess. From this data, we identify and quantify five layers

of risk faced by users of open-source software:

. Risk from active and inactive libraries

. Risk from active and inactive library classes
. Risk due to library age

. Risk due to open-source vulnerabilities

. Risk associated with licensing

04 | LIBRARY COUNTS: INDICATIVE OF
COMPLEXITY, NOT NECESSARILY RISK

Many observers would be surprised at the number of third-party libraries that are included in a typical
piece of software. Contrast OSS telemetry data shows that the average application contains 118 libraries.
While nearly one-quarter (24%) of applications contain fewer than 25 libraries, the same percentage have
more than 150. At the same time, 52% of applications contain fewer than 75 libraries (Figure 1). This
highlights the varying open-source risk from application to application and speaks to the increasing

complexity of software today.

Figure 1: Percentage of overall applicatio

12% %

(2]
—
=]
-
=T
=]
—
(-
-9
=<
[T
o
ES

8%
T % 5%
) ™ 3% o gy, % %
" % m m 2% %
b % % 1% % %o [l
0% 0% 0% . 0% 0% M | 0% 0/6. i | i | i | [| 0% [I Iu%

25-49 50-74 75-98 100-124 125-149 150-174 175-199 200-224 225-248 - 250-274 275-299 '300-324 325-349 350+

NUMBER OF LIBRARIES PRESENT

H JAVA =
® NODE

NET
TOTAL
Figure 2: Percentage of applications containing different numbers of libraries, by language.

One area of discrepancy that will be noted throughout the report is that libraries for the Node language are

much more numerous than with Java and .NET, as each functionality tends to be a separate library with

Node rather than a segment of a library. In fact, 85% of Node applications have more than 350 libraries

(Figure 2), with some extending into the thousands. On the other end of the spectrum, nearly all .NET

applications include fewer than 25 libraries and the average is just six libraries. This is because the .NET

language is highly standardized and controlled by a single entity—Microsoft. Sitting between the two are

Java applications, which have an average of 125 libraries per application.

LIBRARY COUNT

0-24
25-49
5074
7599

100-124
125149
150174
175199
200-224
225-249
250274
275-299
300-324
325349

350+

JAVA
17%
9%
12%
1%
1%
9%
6%
5%
5%
3%
2%
4%
2%
1%
2%

% OF APPS WITH LIBRARIES PRESENT

.NET
3%
— 12Y%
6%
= 5%
== 4%
= 3%

m 3%

mm 4%

m 2%

m 2%

m 2%

m 2%

1 1%
 11%

0-99
100-199
200-299
300-399
400-499
500599
600—699
700-799
800899
900-999
1,000-1,099
1,100-1,199
1,200-1,299
1,300-1,399
1,400+

NODE
1%
7%
4%
14%
9%
12%
9%
%
1%
6%
5%
1%
1%
1%
6%

Figure 3: Percentage of applications by library count, by language.

LIBRARY USAGE BY LANGUAGE

While the mean Java application contains 125 libraries, the median is 100, with 50% of applications
having fewer than that number (Figure 3). Because the mean is higher than the median, the interpretive
result means there are a select number of Java applications with a disproportionately high rate of library
vulnerabilities. Specifically, 16% of Java applications have more than 200 libraries, and 8% have more

than 250. The slf4j-api library is found in 79% of Java applications, and another 10 libraries are found in

more than 70% (Figure 4). All of the top 25 libraries are found in a majority of Java applications. This

means that an attacker who infiltrates a single library can potentially compromise a large percentage of

the world’s Java applications.

>
¥~

Figure 4: Percentage of Java a

containing the top 25 librarie

.« v s N =w o

R = N

PSR GRS
SR N

The streamlined infrastructure supporting .NET development is readily apparent when one looks at library

counts. While nearly 2 in 10 applications (18%) have 10 or more libraries, a solid majority (55%) include 2

or fewer (Figure 3). By far the most common library, System.ServiceModel.Web.dll, is present in 45% of

applications. No other library is included in as many as 20% of applications (Figure 5), but all libraries

present in more than 5% of .NET applications are controlled by Microsoft.

SYSTEM.SERVICEMODEL.WEB.DLL
SYSTEM.DIAGNOSTICS.DIAGNOSTICSOURCE.DLL
SYSTEM.MEMORY.DLL

SYSTEM.BUFFERS.DLL
SYSTEM.VALUETUPLE.DLL
SYSTEM.NUMERICS.VECTORS.DLL
SYSTEM.WEB.HTTP.DLL

MICROSOFT.OWIN.DLL
MICROSOFT.IDENTITYMODEL.TOKENS.DLL
MICROSOFT.APPLICATIONINSIGHTS.DLL
MICROSOFT.IDENTITYMODEL.LOGGING.DLL
SYSTEM.THREADING.TASKS.EXTENSIONS.DLL
MICROSOFT.OWIN.HOST.SYSTEMWEB.DLL
MICROSOFT.OWIN.SECURITY.DLL
SYSTEM.IDENTITYMODEL.TOKENS.JWT.DLL
MICROSOFT.IDENTITYMODEL.JSONWEBTOKENS.DLL
SYSTEM.RUNTIME.COMPILERSERVICES.UNSAFE.DLL
SYSTEM.TEXT.REGULAREXPRESSIONS.DLL
SYSTEM.RUNTIME.DLL
MICROSOFT.BCL.ASYNCINTERFACES.DLL
SYSTEM.GLOBALIZATION.DLL
SYSTEM.TEXT.ENCODINGS.WEB.DLL
SYSTEM.COLLECTIONS.IMMUTABLE.DLL
SYSTEM.CORE.DLL

SYSTEM.COLLECTIONS.DLL

MOST POPULAR .NET LIBRARIES BY % OF APPS

0% 10% 20% 30% 40%
I 45%
I 19%
I 17%
I 16%
I 13%
I 13y
I 13%
3%
— 12%
I 12%
I 12%
1%
I 10%
I 10%
— 10%
I 8%

I 8%
8%
7%
7%
7%
7%
7%

. 5%

. 6%

2021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

50%

60% 70% 80% - 90% ~ 100%

= % OF APPS WITH LIBRARIES PRESENT

Figure 5: Percentage of .NET applications
containing the top 25 libraries.

13

As noted, Node is structured in such a way that each library is smaller and more focused. As a result,
65% of Node applications have more than 500 libraries and 20% have more than 1,000 (Figure 3). The
top 25 Node libraries are all present in 92% or more of Node applications (Figure 6). If any of these
libraries were to be compromised, this would pose extraordinary risk to Node applications around the

world (a dramatically higher risk than in the case of .NET applications).

88% 90% 92% 94% 96% 98% 100%
DEBUG T 98

e
INHERITS e 93,
SAFE-BUFFER M 939
MIME-DB O 93y,
MIME-TYPES I g7y,
05 I g7y,
SEMVER I g7y
SAFER-BUFFER I g
CONV-LITE I 959
LODASH I 05
METHODS I 95Y%
COOKIE T 94 = % OF APPS WITH LIBRARIES PRESENT
ON-FINISHED ~ I 94%
PATH-TO-REGEXP M 94%

EE-FIRST I 939
IPADDR.)S —— 93y
MIME I g3
NEGOTIATOR e 93y, Figure 6: Percentage of Node applications
PARSEURL S 93Y containing the top 25 libraries.
DEPD I 937
HTTP-ERRORS I g3
SETPROTOTYPEOF M 939
STATUS I 939
CORE-UTIL-IS I 929

COMPLEXITY AS A CONTRIBUTOR TO RISK

By all accounts, the use of open-source libraries has exploded in the past several years.® For example, a
recent study by GitHub found that 65% of all Java projects, 90% of .NET projects, and 95% of JavaScript
projects (including Node) on that platform use open-source software.” But measuring open-source risk for
a specific application is more complicated than simply counting libraries. Indeed, this entire study
describes in great detail the fact that different libraries—and different parts of the same library—pose

different levels of risk to an organization.

Yet while there is no direct correlation between the number of libraries and the amount of risk, the
complexity that comes from a proliferation of libraries and multilayered dependency trees can increase
risk. Even without cybersecurity considerations, organizations may benefit from deliberate efforts to
declutter application code and practice basic hygiene on open-source libraries. The increasing focus on

web applications as an attack vector for cyber criminals makes such hygiene even more important.

While the number of libraries is high, the percentage of those libraries that are active is the more
important metric and represents the first layer of open-source risk. Overall, only 38% of libraries present
in applications protected by Contrast OSS and Contrast Assess are active (Figure 7). This means that 62%
of libraries found in applications are not used by the software in any way. Again, Node applications skew
this average somewhat. More than three-quarters (76%) of Node libraries found in applications are

inactive, while that number is 58% with Java and just 33% with .NET.

Why do applications contain so many libraries that are not used in any way? As described above, most
inactive libraries in applications occur when multiple additional libraries are attached to an active
library—but do not contribute to the functionality for which the library was selected. This can lead to
multilayered dependency trees and increased complexity. Node packages in particular introduce many
transitive dependencies. Another reason that libraries may be inactive is that later revisions to a piece of

software might bypass libraries that were active in a prior version.

PERCENT OF LIBRARIES THAT ARE ACTIVE

67%
Figure 7: Percent of libraries active

per application, by language.

2%
38%

24%

JAVA NET NODE TOTAL

ACTIVE AND INACTIVE LIBRARIES BY LANGUAGE

While the average Java application contains 125 libraries, 61% of Java applications have fewer than 50
active libraries (Figure 8). And while all the top 25 Java libraries are present in a majority of applications,
the percent of applications where these libraries are active is much lower (Figure 9). Only 12 of the top 25

Java libraries are active in more than half of applications.

NODE
00—-99 = 17%
100199 Eeeeeeessssss———— §1%
200—299 m— 22%
300—399
400-499
500-599
150174 600—-699
175—199 700-799
200224 800—899
225-249 900—999
250—-274 1,000—1,099
275—-299 1,100-1,199
300-324 1,200-1,299
325—349 1,300-1,399
350+ 1,400+

0-24
25—49
50-74
75-99

100124
125-149

0O N OO & WN

LIBRARIES

Figure 8: Percentage of applications by active library count, by language.

B % OF APPS WITH ACTIVE LIBRARIES

2021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

SLF4J-API

SPRING-CORE

SPRING-BEANS

COMMONS-CODEC

JACKSON-CORE

JACKSON-DATABIND

SPRING-AOP

SPRING-WEB

JACKSON-ANNOTATIONS

SPRING-CONTEXT

SPRING-EXPRESSION

SPRING-WEBMVC

SPRING-TX

JBOSS-LOGGING

CLASSMATE

SNAKEYAML

COMMONS-10

HTTPCORE

GUAVA

COMMONS-LANG3

HTTPCLIENT

JUL-TO-SLF4)

COMMONS-LOGGING

SPRING-B0OT

COMMONS-LANG

0% 20% 40% 60%
T 70%

80% 100%

T 94%
T 78%
I 36%
T 86%
T 88%
T 73%
T 95%
T 84%
T 93%
I 72%
T 96%
T 83%
I 47%

I 52%

% OF APPS WITH LIBRARY WHERE
LIBRARY IS ACTIVE

— 27% u
I 46%
T 67%
T 70%
T 71%

Figure 9: Percentage of
Java applications with
active libraries in the top 25,
in descending popularity
order.

T 9%
— 37%
I 49%
T 72%
— 65%

Amazingly, 49% of .NET applications have just one active library (Figure 8). The most common library,

System.ServiceModel.Web.dll, is active in 37% of applications (Figure 10). Beyond that, only one library is

active in more than 15% of applications, and an additional five are active in more than 10%.

18

With Node applications, while the application count averages 537, none of the Node applications
protected by Contrast OSS and Contrast Assess have more than 300 active libraries, and 78% have fewer

than 200 (Figure 8). And while the top 25 libraries are present in more than 90% of applications, the most

common active library is only present in 42% of applications (Figure 11). This reveals that many of the

numerous Node libraries found in applications are not actually used.

2021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%
D EB UG 42%

NS I 37
INHERITS I 27%
SAFE-BUFFER I 36%
MIME-DB I 31%
MIME-TYPES I 339
s I 40%
SEMVER I 37%
SAFER-BUFFER I 25Y%
ICONV-LITE I 42%
LODASH I 35%
METHODS I 41%
COOKIE I 35%
ON-FINISHED I 39%
PATH-TO-REGEXP I 40%
EE-FIRST I 39%
IPADDR.JS I 39%
MIME . 39%
NEGOTIATOR I 31%
PARSEURL I 39%
DEPD I 40%
HTTP-ERRORS I 40%
SETPROTOTYPECF I “23%
STATUSES e 40%

CORE-UTIL-IS. - I — 24%

m % OF APPS WITH ACTIVE LIBRARIES

Figure 11: Percentage of Node applications with active libraries in the top 25, in descending popularity order.

ACTIVE AND INACTIVE LIBRARIES: TWO KINDS OF RISK

Organizations face risk from both their active and their inactive libraries. The libraries actually used by the

software can potentially have vulnerabilities that bring risk if they are not addressed. And while

vulnerabilities in inactive libraries pose no risk, companies can waste many hours of staff time remediating
those vulnerabilities if they do not know which libraries are active. In addition to this operational
inefficiency, fixing vulnerabilities that pose no risk can also delay action on vulnerabilities that can be

exploited.

Another insight that can be gleaned from this data is that applications containing more libraries tend to
have a lower percentage of those libraries that are active. Again, this could suggest that in these cases,

legacy code needs to be cleaned up to reduce the total code surface area and reduce risk.

Of course, both of these efforts at library hygiene require visibility into which libraries are active and which

are not.

While a given library may be active in an application, only a very small part of that library is active in many
cases. On average, across all languages, only 31% of classes in active libraries are invoked (Figure 12).
This state of affairs can be quantified by looking at library classes that are active in an application. Classes
are logical collections of code within libraries that perform related tasks. Vulnerabilities that may exist in
inactive classes in a library—even if the library itself is active—cannot be exploited successfully by cyber

criminals.

Because of differences in the way they are structured, the number of classes varies widely depending on
the language being used. On average, Java libraries contain 279 classes, .NET libraries contain 138
classes, and Node libraries contain just eight classes (Figure 13). But only 32% of Java classes, 67% of
NET classes, and an astounding 5% of classes in Node libraries are invoked by active libraries. Clearly,

even in active libraries, much of the code is not used by an application—especially with Java and Node.

100%
Figure 12: Percent of classes per 90%

active library, per application. 80% 33%

70% 69%
60 68%

50% 95%

40%
30%

20%
10%
0% 5%

JAVA NET NODE TOTAL

[*" % ACTIVE CLASSES
% INACTIVE CLASSES

Figure 13: Classes per i

active classes per active libr

LIBRARY CLASSES BY LANGUAGE
For Java libraries, less than 30% of classes are active in a majority (53%) of libraries (Figure 14). Several of the

top 25 Java libraries have 37% or 38% of their classes active, but others are in the single digits (Figure 15).
One piece of good news is that the above averages obscure the fact that 48% of .NET libraries and 68% of

Node libraries have more than 90% of their classes active (Figure 14). However, in reality, the percentage of

active classes varies widely depending on the specific library, as shown in Figures 15 and 16.

2021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT 23

% OF ACTIVE CLASSES

70% 68%
60%
50% 48%
(2¢]
= 0%
= 31%
& 3%
= 23% 2%
S m
° higsMhgy10% 1% % 9% 9% g, 9%, 9%
10% 7% 6% 8% 57 70
B3y d% %3y 4% 3y, 4% | 4% 5% 45" 4% 5% 39 39
" IIIII A Rt | T B I T 1] s
JAVA NET NODE TOTAL
= <10% = 10%—19% B 20%—29% B 30%—39% B 40%—49%
® 50%—59% 60%—69% B 70%-79% = 80%—89% = 90%+

Figure 14: Percentage of active classes,
by language.

2021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

USAGE METRICS FOR MOST COMMON JAVA LIBRARIES

GUAVA

COMMONS-LANG3 I &

SPRING-TX [3
JBOSS-LOGGING [=

SNAKEYAML [

COMMONS-I0 W £

SPRING-AOP

SPRING-WER [

JACKSON-ANNOTATIONS

45%
s 38% 38% 37%
2 35% 3 34% 33y 0 32% OF
= w29 29% - - CLASSES
2 5% 2% 2% 919 2% - 21% 2% AE%EVDEF]E\I\!IA
: 20% 15% LIBRARY, ON
= AVERAGE
= 0% %
g 5%
= 0%
= = 2 = = =T 23S
o= 2 = 2282
Del = =3 — = 1 —
= = o = = &
s o - 2

JACKSON-CORE

JACKSON-DATABIND I
SPRING-CONTEXT [

SPRING-EXPRESSION [
SPRING-WEBMVC [

COMMONS-CODEC [l &
COMMONS-LANG [

COMMONS-LOGGING I =

Figure 15: Percent of classes invoked by active libraries
for top 25 Java libraries, in descending popularity order.

2021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT 25

USAGE METRICS FOR MOST COMMON .NET LIBRARIES

120%

31%

=
b
~
=
»
»
=X
»
o
=X
S
~
=
o
©
%
~
=
N
©o
=
N
o
=X
™
7=
X
s
o
N
o
==
=
o~
~
=
5
o
=X
~
Lo
=
N
7<)
=X
o
)
=X
e
~
=X
=)
s
=
7o)
(7
=
©
=
B = = =
= (=) (=} =)
=) co © =3

@3SN SISSY1I AYYYHAIT 40 %

13%

20%

0%

0% 0%

0%

T10°INIHIYD INIINNY IWILSAS

T10°3409' W3LSAS
T10°318YLNININISNOILITTT0D W LSAS
T10°8IM SINIOOINT LXILINILSAS
TI0°NOILYZITYE0T9° WALSAS
T10°SIIY4YILNIINASY 198°110S04DIN
T10°INILNNY WALSAS
T10°SNOISSTUXIUY NI LXIL WILSAS
T10°34YSNNSTIINYISYITANOI INILNNY INILSAS
T10°SNIN0L9IMNOSI TIQOWALIINIAI'L10SOHIIN
TIOIMSNIN0L TIQOWALILNIAI WILSAS
TITALIYNIIS NIMO'LI0SOHIIN
T10°8IMAILSAS LSOH NIMO'L10SOYIIN
T10°SNOISNILX3"SYSYL'INIQVIYHL WILSAS
T10°INI9907 TIAOWALILNIAI'L10SOHIIW
T10°SIHIISNINOILYIITddV'L10SOUIIN
T10°SNIN0L1IAOWALILNIAIrL10SOHIIN
T10°NIMOL10S04IIN

T10'd1IH @IM WILSAS

T10°SY0LIIN SIIHINNNWILSAS
T10°31dNLINTYA'INILSAS

110°S4344n8 WILSAS

TITAYOWIWN WILSAS

110°394N0SIILSONIYIO SIILSONIVIO WILSAS
T10°8IM 1I00WIDINYIS WILSAS

Figure 16: Percent of classes invoked by active libraries

for top 25 .NET libraries, in descending popularity order.

26

2021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

Figure 17: Percent of classes invoked
by active libraries for top 25 Node libraries,
in descending popularity order.

USAGE METRICS FOR MOST COMMON NODE LIBRARIES

. 100%98% 100% 100% 100% 100% 100% ggg, 100% 100% 100% 100%
0
%
90% 845 88%
80%
0 0
80% 78% 240, 74%
= 0% 67% 65% 66% 67%
2 60% 55% 58%
=
= 50% 46%
= 40%
S 30%
=
20%
5% OF CLASSES
10% USED PER
0% LIBRARY, ON
AVERAGE
C L E R8RS EEBAESEEEEYRSEEREE
E T EELE =ZEE2EIS22gEg:sEE2228¢g¢g
2 £ 5 4 s ®8 L 2= ° E=x 4 285 = E & 5 &
w = < & = 8 S HE s = o a4 =
= = = = s T = = £ 3
= &

As new vulnerabilities are discovered in libraries and added to the Common Vulnerabilities and Exposures
(CVE) database, new versions of those libraries are released that remediate these issues. Ideally,
organizations would immediately update the library in all applications, but there are reasons this is not
advisable in some cases. Some libraries release new versions before adequate testing has been done,
resulting in unstable code. In other instances, a library update might have downstream impacts on
functionality that has nothing to do with the CVE being addressed. Notwithstanding, organizations are

further behind on library updates than they should be.

One problem in compiling data on library age for this report is that each framework has a unique
numbering system and frequency for new library releases. As a result, simply counting the number of
versions that have been released since the version found in a specific application does not provide an
“apples to apples” comparison across libraries. Instead, we opted to measure the chronological age of

each library version—specifically, how many days ago a specific version was released.

3.5
3.0
2.5
2.0

YEARS

15
1.0
0.5

26

18 19 2

13 14

ALL LIBRARIES
I ACTIVE LIBRARIES

JAVA NET NODE TOTAL

Figure 18: Average years behind for libraries, by language.

TYPICAL LIBRARIES ARE YEARS OUT OF DATE

Among all applications protected by Contrast OSS and Contrast Assess, the average library has not been

updated in 937 days, approximately two and a half years (Figure 18). Among active libraries, the news is

only slightly better—892 days or 2.4 years. Further, more than 3 in 10 (31%) of libraries currently in use

are more than three years old, with 6% more than five years old (Figure 19). Only 28% of active libraries

are less than a year old.

The differences between languages are also clear in Figures 18 and 19. Java libraries are nearly three

years old on average—2.9 years for all libraries and 2.8 years for active ones. And while 45% of Java

libraries are less than two years old, 37% are more than three years old. .NET libraries, on the other hand,

are barely 16 months old on average, and just 21% are more than two years old. Node libraries are in

between, with the average library being just under two years behind.

Figure 19: Percent of active lib
number of years behind, by lan

OLDER LIBRARIES INCREASE RISK AND REDUCE AGILITY

Keeping libraries up to date is a part of the basic hygiene that is critical for the continued health of an
application. This is especially important with libraries for which a high percentage of classes is being
used, and are therefore deeply integrated into an application. Needless to say, visibility into the age of
each library and the percentage of classes in use is essential to conduct this basic maintenance

effectively.

Failure to keep libraries updated over time not only increases risk to an organization but also makes library
updates much more difficult and time-consuming when they are finally done. When a library stays
dormant in an application for multiple years, any new vulnerability is difficult to fix because so much code
has been built over it. Updating a years-old version of a library will require significant work by the

development team.

2021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT 30

Preventing and remediating software vulnerabilities is the whole point of application security, and it is
important for organizations to have a picture of vulnerabilities present in their third-party libraries. Among
applications protected by Contrast OSS and Contrast Assess, an astounding 94% of Java applications and
90% of Node applications have at least one CVE (Figure 20). The news is especially bad for Java, where

45% of applications have a Critical CVE.

Figure 20: Percentage of applications with
at least one CVE, by language.

TOTAL

2021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

60

50 50 Figure 21: Average distinct vulnerabilities per application, by language.
40
34

g 30

20

10 5

012
0 E— -
JAVA NET NODE TOTAL

Overall, the average application has 34 CVEs. However, this number is misleading because Java
applications have 50 vulnerabilities on average (Figure 21). There are just five GVES per Node application,

and just one vulnerability for every eight .NET applications.

Drilling down to individual active libraries, the number of vulnerabilities also varies greatly by programming
language. Nearly 1 in 12 active Java libraries (8%) contain a CVE, while just 2% of active Node libraries

and 1% of active .NET libraries have one (Figure 22).

Figure 22: Percentage of active libraries witl

BY SEVERITY

Some vulnerabilities obviously present more risk than others, with Critical and Major CVEs much more
risky than Standard and Informational ones. Just under 5% of active Java libraries have Critical or Major
CVEs—more than half of the total CVEs for the language (Figure 23). Critical or major CVEs are present in

under 1% of active .NET libraries and just over 1% of active Node libraries.

Figure 23: Percentage of active libraries
with CVEs, by language and severity.

0 0
0.68% 0.52% M 110% 0.48% 0.49%

0-26% 0.05% 0.03% I I 0.03%
[] m B L 00% L.0%% [

JAVA NET NODE TOTAL

[7¢]
(W]
=
()
==
=
=
(]
]
(=
=T
(=
@
—
[NE]
=
[—
()
=x
Ll
o
=

CRITICAL W MAJOR I STANDARD I INFORMATIONAL

BY LIBRARY AGE

It is obvious that less up-to-date libraries contain more CVES on average than newer versions. What may
be surprising is the speed at which risk increases. Looking at Java libraries in particular, the odds of a
Critical or Major CVE being present in a library increases from 1% to 3% to 4% to 7% as library age
progresses from one year old to four years old, spiking at 48% when the library is 15 years old (Figure
24). Put another way, updating an old library is a quick way to significantly reduce organizational risk. It
goes without saying that while CVEs in older libraries get resolved in later versions of the library, they

remain unresolved in the older version where the CVE was found.

60%

50%
=
= 4%
=
= 30%
=T
S 16%
= W% wy 0
= 13% 129

0,
10% o T 8%
% 3%
0%

YEARS BEHIND

FALSE-POSITIVE RATES FOR TRADITIONAL SCA TOOLS

Figure 24: Percentage of Java libraries
with critical and major CVEs, by
library age.

48%

33%
21%

25%
20%

1%

0V 1 12 13 14 15

Owners of applications protected by Contrast OSS can easily determine which CVEs are present in inactive

libraries and library classes, and therefore pose no risk to the organization. As noted, traditional SCA tools

that simply return a list of CVES present in an application produce a false positive every time they list a

CVE in an unused part of the application.

The aggregate data shows that 17% of Critical and Major CVEs in Java applications, 15% in .NET

applications, and 80% in Node applications are in inactive libraries or classes (Figure 25). Without this

observability, organizations would spend significant time remediating vulnerabilities that introduce zero

risk. For organizations with hundreds of applications, this can quickly tally into thousands of hours

annually—which translates into development delays.

Figure 25: SCA false-positive rates for Java, .NE

RESOLVING RISKY VULNERABILITIES, AND BEING READY FOR NEW ATTACKS

Taking care of vulnerabilities is what application security is all about, but not every vulnerability is created
equal. Just as Critical and Major vulnerabilities rank ahead of other ones in terms of risk, CVEs in active
classes that are a part of active libraries are the only ones that present risk to an organization. Again, full
observability into active libraries and classes, library age, and unresolved CVEs is important to reduce risk

and maximize efficiency.

That said, it should be noted that all CVEs that are logged are discovered by a very small number of

volunteer security researchers—a group that is badly outnumbered by cyber criminals. In actuality, it is
very likely that there are many more undiscovered vulnerabilities than discovered ones. While this report
focuses on the risks we know about, it is important to remember that runtime protection is critical to

prevent exploitation of unknown vulnerabilities.

2021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

Although open-source code is free to use, it is not always free to use without restriction. These restrictions are
determined by the type of license associated with the library. Licenses fall into two categories: permissive and
copyleft. Permissive licenses place no restriction on the use of the software and include Apache, the most

common Java and .NET license, and MIT, the most common Node license (see Figure 26).

Copyleft licenses, on the other hand, claim that the code is copyrighted and can only be used if the resulting
software product is released as open source. This, of course, introduces significant operational risk for
organizations. Including even one library that uses a copyleft license in a library’s dependency tree technically
renders the entire library subject to copyleft restrictions, and libraries can potentially be mislabeled in this

regard.®

Versions of the General Public License (GPL) are the most popular copyleft licenses, and Contrast Labs rates all
versions of GPL as high risk. Other copyleft licenses bring moderate risk according to Contrast Labs, including

Lesser GPL (LGPL), Mozilla Public License (MPL), and Eclipse Public License (EPL).

Because of this risk, it is concerning that 69% of Java applications and 33% of Node applications have at
least one high-risk license (Figure 27a and 27b). In addition, 95% of Java applications and 70% of Node
applications have at least one license of unknown or variable risk. One specific copyleft license, GPL 2.0, is
present in 35% of all applications. Although the .NET language tightly controls its licenses and its
applications have no high- or moderate-risk licenses, 99% of organizations represented in the dataset have

at least one application containing a high-risk license.

High-risk licenses are only used with 2% of Java libraries and a tiny fraction of 1% of Node libraries. It is

entirely possible that the libraries associated with these licenses are inactive, and organizations may not
even be aware that these licenses are in their applications. Yet, high-risk licenses pose significant risk, and
this is yet another reason that full observability of the open-source software environment is critical for all

organizations.

Figure 26: Percentage of applications and
libraries with the top 10 open-source licenses.

I % OF LIBRARIES I % OF APPLICATIONS

90%
’ 80%
80% 79%
70%
60% 49%
50% 419 " 4h
0% 35% 36% 3 9%
30% 2% 1%
20%
10% g 5% S I] 1% i
0%
w“@@@é“%@&ee\@»
N R N T R P
N s & & &

2021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT 37

JAVA LICENSE USAGE

0% 20% 40% 60% 80% 100%

2%
69%
H G H e — 00
MODERATE = 81%
[R ——_—

67% 98%

L — 100
22%

95%
R | e 00%

% OF LIBRARIES M % OF APPLICATIONS I % OF ORGANIZATIONS

NET LICENSE USAGE

0% 20% 40% 60% 80% 100%

HIGH

MODERATE

L — 10
UNKNOWN/VARIES

% OF LIBRARIES M % OF APPLICATIONS I % OF ORGANIZATIONS

Figure 27a: License usage by risk level and language.

NODE LICENSE USAGE

0% 20% 40% 60% 80% 100%

33%
G | 52%
90
DR AT e 257%

99%

L 100%

1% 0
g R L ———

% OF LIBRARIES I % OF APPLICATIONS WM % OF ORGANIZATIONS

LICENSE USAGE

0% 20% 40% 60% 80% 100%

3%
H G H e 521
LUy L —_
99%
L —— (007
1%
g L ——

% OF LIBRARIES M % OF APPLICATIONS I % OF ORGANIZATIONS

Figure 27b: License usage by risk level and language.

The 2021 Contrast Labs Open-source Security Report leverages data from real applications to identify
trends in the quest to secure the libraries that form an integral part of most applications today. The report
highlights five layers of risk faced by every organization that develops software: active and inactive

libraries, active and inactive classes, library age, vulnerabilities in libraries, and licensing risk.

An increasingly efficient software factory is the engine behind the ongoing digital transformation that is
remaking how companies operate and interact with their customers. This long-standing trend accelerated
its pace during the COVID-19 pandemic. As many as 79% of executives who responded to one survey
said that the pandemic had resulted in increased budgets for digital transformation.® Another survey found
that consumers are three times more likely to say that 80% of their customer interactions are digital in

nature than before the coronavirus.™

From an application security perspective, open-source libraries are one of the four elements of the

software supply chain, each of which must receive equal and critical priority:

. What you write: Custom code developed in-house

. What you build with: Software development tools

. What you buy: Off-the-shelf Software-as-a-Service (SaaS) applications

. What you use: Third-party libraries

n WHAT YOU WRITE" X WHAT YOU BUILD WITH

60% release code multiple times per day; e Developers have access to literally 1,000+
80% do so multiple times per week software development tools

79% still under pressure for more speed e Work-from-home environments create

55% skip security processes to meet SDLC greater security risks for thousands of pieces
deadlines of software running with high privilege

Less than 50% of application security

integrated with CI/CD tools

B-@7) AT vou BUY .# WHAT YOU USE

¢ SaaS market to grow 25% by 20222 * 90% of applications rely on third-party

e 70% indicate “uninformed or misleading libraries that comprise up to 70% of code'®
claims about security”in a Saa$S solution e Applications on GitHub have an average of 200
were cause of dissatisfaction' dependencies'®

* 95% of businesses host sensitive data in e 73% of applications have a vulnerability
SaaS solutions™ traceable to third-party code

Figure 28: There are four primary components to the “assembly line”

If any of these elements is missing from an organization’s application security strategy, the other elements are

weakened, and risk is increased. When it comes to open-source libraries, they inject code into the software

2021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT 41

factory and introduce significant risk. The fact that so many applications have a library with a high-risk
license attests to the fact that too many organizations have an incomplete view of what libraries exist in

their applications. This means that they are unable to provide the protection that those applications need.

KEY TAKEAWAYS

In this context, it is important that organizations take a holistic, methodical approach to open-source

security. Factors they should consider include:

. Set comprehensive policies for libraries, frameworks, and licensing. Defining and
enforcing limitations on the components allowed in an application can prevent libraries
with GPL licenses or outdated libraries from being added. Likewise, policies for updating
existing libraries can decrease the odds of vulnerabilities and save extra work in the

future.

. Establish continuous observability. As we have said repeatedly, full visibility into which
libraries and classes are active, how old they are, what CVEs they hold, and what
licenses they require is critical for prioritization of remediation and reduction of risk.
Since only active libraries and classes pose risk, this knowledge significantly narrows the

scale of needed remediation.

. Embed controls in continuous integration/continuous deployment (CI/CD) processes.
This can keep risky libraries and licenses from entering an application inadvertently by

automating policy enforcement.

As the economy and public infrastructure become increasingly reliant on software, applications are an
increasingly attractive target for cyber criminals. For the components of that software that come from
open-source libraries, it is critical that organizations have the detailed data they need to make their
software both secure and functional. This level of visibility and control is only available with tools from
Contrast Security. Organizations that leverage these tools are increasing the efficiency of their

development efforts while making them more secure.

JEFF WILLIAMS

DAVID LINDNER

Jeff brings more than 20 years of security leadership experience as
Co-Founder and Chief Technology Officer of Contrast. Previously, Jeff
was Go-Founder and Chief Executive Officer of Aspect Security, a
successful and innovative application security consulting company
acquired by Ernst & Young. Jeff is also a founder and major contributor
to OWASP, where he served as Global Chairman for eight years and
created the OWASP Top 10, OWASP Enterprise Security APl, OWASP
Application Security Verification Standard, XSS Prevention Cheat Sheet,
and many other widely adopted free and open projects. Jeff has a BA
from the University of Virginia, an MA from George Mason, and a JD

from Georgetown.

David is an experienced application security professional with over 20
years in cybersecurity. In addition to serving as the chief information
security officer, David leads the Contrast Labs team that is focused on
analyzing threat intelligence to help enterprise clients develop more
proactive approaches to their application security programs.
Throughout his career, David has worked within multiple disciplines in
the security field—from application development, to network
architecture design and support, to IT security and consulting, to
security training, to application security. Over the past decade, David
has specialized in all things related to mobile applications and securing
them. He has worked with many clients across industry sectors,
including financial, government, automobile, healthcare, and retail.

David is an active participant in numerous bug bounty programs.

BRIAN GLAS

KATHARINE WATSON

Brian possesses nearly 20 years of experience in various roles in IT
and over a decade in application development and security. In addition
to teaching a full load of classes at Union University, Brian serves as a
part-time management consultant and advisor for Contrast Labs. He
worked on the Trustworthy Computing team at Microsoft and served
as a project lead and active contributor for SAMM v1.1-2.0 and
OWASP Top 10 2017. He is a popular speaker at numerous
conferences and online events, having presented at InfoSec World,
Cloud Security World, and numerous OWASP conferences and
meetings. Brian is also an author of various papers and is currently
researching writing a book on application security. He holds a long list
of cybersecurity and IT certifications as well as a master in business
administration and bachelors in computer science from Union

University.

Katharine is a driving force in developing and building data analytics
frameworks for Contrast—including Contrast Labs—and turning data
into actionable narratives and insights for internal and external
customers. Katharine worked as an analyst, consultant, and project
manager in both private and nonprofit organizations. Before launching
a career in data science, Katharine worked for three years as a
mathematics teacher in the Teach for America program. Katharine
holds undergraduate and graduate degrees from The Johns Hopkins

University.

PATRICK SPENCER,
PH.D.

MARK MULLINS

Patrick founded and serves as the editor in chief for the Inside Appsec
podcast and leads the content marketing and PR/communications
team at Contrast. He has more than a decade and a half of experience
in various senior marketing and research roles within the cybersecurity
sector and is the recipient of numerous corporate and industry awards.
After leaving the corporate world to start his own agency, Patrick
joined Fortinet to lead content marketing and research. His many
duties included serving as the editor in chief for The CISO Collective.
Patrick’s roots in cybersecurity go back to Symantec, where he spent
nearly a decade in senior marketing roles of increasing scope and
responsibility. While at Symantec, Patrick served as the editor in chief
for CIO Digest, an award-winning digital and print publication

containing strategies and insights for the technology executive.

MHM ContentSource specializes in marketing research and writing
projects for clients across the technology sector. Mark has 15 years of
experience in research and content marketing across the technology
sector, as both an employee and a consultant. He has authored
numerous research reports, white papers, and magazine features and
produced dozens of marketing videos and a podcast series. His work
has been published by leading technology brands such as Symantec,
LivePerson, PRO Unlimited, Finastra, Fortinet, Lastline, and Contrast

Security, among others.

PAULINE LOGAN

JOE COLETTA

Pauline oversees the product management strategy and execution for
Contrast OSS. She spent over a decade developing applications in
Java, .NET, and Node.js and has served in various team and project
leadership positions throughout her career. The breadth of these
experiences gives Pauline a keen understanding of the opportunities
and risks that open-source code poses. She holds a computer science

degree from Queens University in Belfast.

Joe Coletta oversees product marketing strategy and execution for
Contrast 0SS and is focused on open-source security. Joe has worked
in the application security space for over a decade and has a
comprehensive view of all aspects, starting in customer success
before migrating to go-to-market strategy. Joe leverages his
consultative experience with application security practitioners to

highlight solutions that solve key customer problems.

'Sage McEnery, “How much computer code has been written?” Medium, July 18, 2020.

2Shivam Srivastava, et al., “Developer Velocity: How software excellence fuels business performance,” McKinsey & Company, April 20, 2020.

3 |bid.

*Josephine Wolff, “The SolarWinds Hack Is Unlike Anything We Have Ever Seen Before,” Slate, December 18, 2020.

5“Data Breach Investigations Report, 2020,” Verizon, April 2020.

SForrester found a 40% increase in the use of open-source code in one year; see Amy DeMartine and Jennifer Adams,

“Application Security Market Will Exceed $7 Billion by 2023,” Forrester, updated March 29, 2019.

7“Securing the world’s software,” GitHub Octoverse, accessed March 26, 2021.

8Thomas Claburn, “Ruby off the Rails: Code library yanked over license blunder, sparks chaos for half a million projects,” The Register, March 25, 2021.
9John Koetsier, “97% Of Executives Say Covid-19 Sped Up Digital Transformation,” Forbes, September 10, 2020.

10“How COVID-19 has pushed companies over the technology tipping point—and transformed business forever,” McKinsey & Company, October 5, 2020.
" “The State of DevSecOps Report,” Contrast Security, November 2020.

2“Gartner Forecasts Worldwide Public Cloud Revenue to Grow 6.3% in 2020,” Gartner, July 23, 2020.

3 Rich Cracknell, et al., “Securing software as a service,” McKinsey & Company, September 2019.

4 Alex Powell, “The biggest mistakes in SaaS security,” Cloud Security Alliance, February 8, 2021.

'S Manolo Edge, “3rd party libraries, are they a risk?” DEV, January 15, 2020.

16 Cathy Zhou, “The State of the Octoverse 2019,” GitHub, November 6, 2019.

47

https://medium.com/modern-stack/how-much-computer-code-has-been-written-c8c03100f459
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-how-software-excellence-fuels-business-performance
https://slate.com/technology/2020/12/solarwinds-hack-malware-active-breach.html
https://enterprise.verizon.com/resources/reports/dbir/
https://www.forrester.com/report/Application+Security+Market+Will+Exceed+7+Billion+By+2023/-/E-RES144054
https://octoverse.github.com/static/github-octoverse-2020-security-report.pdf
https://www.theregister.com/2021/03/25/ruby_rails_code/
https://www.forbes.com/sites/johnkoetsier/2020/09/10/97-of-executives-say-covid-19-sped-up-digital-transformation/?sh=438ce51e4799
https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/how-covid-19-has-pushed-companies-over-the-technology-tipping-point-and-transformed-business-forever
https://www.contrastsecurity.com/hubfs/DocumentsPDF/The-State-of-DevSecOps_Report_Final.pdf?hsCtaTracking=a203b826-65b7-4b82-85de-60d5c1fce5e8%7C920d6cec-5ad9-4b95-8e2e-c2c1c6ec7660
https://www.gartner.com/en/newsroom/press-releases/2020-07-23-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-6point3-percent-in-2020
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/Risk/Our%20Insights/Securing%20software%20as%20a%20service/Securing-software-as-a-service-vF.pdf
https://cloudsecurityalliance.org/blog/2021/02/08/how-to-avoid-the-biggest-mistakes-with-your-saas-security/
https://dev.to/nombrekeff/3rd-party-libraries-are-they-a-risk-2emp
https://github.blog/2019-11-06-the-state-of-the-octoverse-2019/

CDNTRAST

SECURITY

240 3rd Street
Los Altos, CA 94022
888.371.1333

Contrast Security is the world’s leading provider of security technology that enables software applications to protect themselves against
cyberattacks, heralding the new era of self-protecting software. Contrast's patented deep security instrumentation is the breakthrough
technology that enables highly accurate assessment and always-on protection of an entire application portfolio, without disruptive
scanning or expensive security experts. Only Contrast has sensors that work actively inside applications to uncover vulnerabilities,
prevent data breaches, and secure the entire enterprise from development, to operations, to production.

¥y 0 in ©

