
2021 CONTRAST LABS
OPEN-SOURCE SECURITY
REPORT
Trends and Best Practices From Real-world Software Supply Chains



EXECUTIVE SUMMARY

INTRODUCTION

P01

P03

RISK LAYER 1: ACTIVE AND INACTIVE LIBRARIES

LIBRARY COUNTS: INDICATIVE OF COMPLEXITY, 
                              NOT NECESSARILY RISK

P07

P10

RISK LAYER 2: ACTIVE AND INACTIVE LIBRARY CLASSES

P16

P22

•      INFOGRAPHIC: Key Findings 

TABLE  O F  CO NT ENTS

2021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

RISK LAYER 3: LIBRARY AGE P28

RISK LAYER 4: VULNERABILITIES IN LIBRARIES P31

RISK LAYER 5: LICENSING RISK P36

CONCLUSION

FOREWORD

P40



01  |  FO REW O RD We frequently assert that not every software vulnerability should be treated the same, and this is 

especially true with open-source software. Indeed, our data shows that 62% of libraries present in an 

application are not used at all by the software, and thus they present no risk. But the issue is deeper: Of 

libraries that are used, only 31% of the classes in those libraries are invoked by the application. The truth 

is, while third-party libraries comprise the majority of an application in terms of lines of code, less than 

one-tenth of the code that actually runs comes from open source. The rest comes from custom code 

written by developers. Unfortunately, legacy software composition analysis (SCA) tools focus on everything 

equally, and fail to identify what really matters. This ratchets up risk while increasing inefficiencies.

The result is that a huge share of the vulnerabilities found in open-source code in a typical application 

are inactive and pose no risk. Further, as traditional SCA tools identify all vulnerabilities and view them 

the same, this translates into a tremendous amount of wasted time. This operational inefficiency is 

compounded by the fact that not all vulnerabilities found in active libraries and classes should be treated 

the same—only a fraction pose serious risk. The lack of comprehensive observability also impacts the 

ability to track and manage open-source licensing: A surprising percentage of applications have 

open-source licensing exposures. 

Open-source software is firmly embedded in every organization's software stack. Each company must 

adapt its software factory with processes and technologies to identify software supply chain issues and 

prevent them from exposing the businesses to attack. Our goal with the “2021 Open-source Security 

Report” is to help organizations understand the layers of risk presented by open-source software, and the 

strategies they can employ to mitigate that risk. Taking these steps can help organizations to take 

advantage of the full potential that modern software offers to organizations in all industries, while 

minimizing risk.

Sincerely,

JEFF WILLIAMS
CTO AND CO-FOUNDER 

DAVID LINDNER
CHIEF INFORMATION SECURITY OFFICER

012021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

Already an accelerating trend before the world-changing events of 2020, digital transformation is now 

moving at breakneck speed to bring radical change to the way organizations conduct business. 

Applications are at the heart of this phenomenon, delivering new experiences for both business 

customers and consumers while improving operational efficiency and creating new revenue streams.

Somewhat hidden in this process are millions of software developers, who have honed their craft to 

the point that it functions as a fast and efficient “software factory,” with extensive automation and 

standardization of processes across the software development life cycle (SDLC). Using methodologies like 

Agile and DevOps, they have accelerated release cycles while improving quality. One practice that 

contributes to this efficiency is code reuse, which includes open-source libraries and frameworks. The 

typical application today contains dozens and quite often hundreds of libraries, many of which provide 

indispensable core functionality and help propel digital transformation.

But the efficiency brought about by the extensive use of libraries is not without risk. The increased reliance 

on applications has not escaped the attention of cyber criminals, who have shifted more attention to this 

attack vector. The massive SolarWinds attack that was revealed in late 2020 is a stark reminder of the 

vulnerability of the software supply chain and the risk it poses.

Recognizing the importance of securing the software supply chain, Contrast Labs is pleased to announce 

the publication of research findings regarding open-source utilization and risk. The analysis is based on 

telemetry from tens of thousands of real-world applications and application programming interfaces (APIs) 

that are assessed and protected by Contrast solutions. This data comes from real-world examples of the 

software supply chain.

The report identifies five areas of risk around open-source libraries and frameworks: active and inactive 

libraries, active and inactive library classes, library age, open-source vulnerabilities, and licensing risk. 

Each of these areas brings risk to organizations that can hamper operational efficiency, the ability to 

prevent and thwart attacks by cyber criminals, and avoid legal problems regarding software ownership.



We frequently assert that not every software vulnerability should be treated the same, and this is 

especially true with open-source software. Indeed, our data shows that 62% of libraries present in an 

application are not used at all by the software, and thus they present no risk. But the issue is deeper: Of 

libraries that are used, only 31% of the classes in those libraries are invoked by the application. The truth 

is, while third-party libraries comprise the majority of an application in terms of lines of code, less than 

one-tenth of the code that actually runs comes from open source. The rest comes from custom code 

written by developers. Unfortunately, legacy software composition analysis (SCA) tools focus on everything 

equally, and fail to identify what really matters. This ratchets up risk while increasing inefficiencies.

The result is that a huge share of the vulnerabilities found in open-source code in a typical application 

are inactive and pose no risk. Further, as traditional SCA tools identify all vulnerabilities and view them 

the same, this translates into a tremendous amount of wasted time. This operational inefficiency is 

compounded by the fact that not all vulnerabilities found in active libraries and classes should be treated 

the same—only a fraction pose serious risk. The lack of comprehensive observability also impacts the 

ability to track and manage open-source licensing: A surprising percentage of applications have 

open-source licensing exposures. 

Open-source software is firmly embedded in every organization's software stack. Each company must 

adapt its software factory with processes and technologies to identify software supply chain issues and 

prevent them from exposing the businesses to attack. Our goal with the “2021 Open-source Security 

Report” is to help organizations understand the layers of risk presented by open-source software, and the 

strategies they can employ to mitigate that risk. Taking these steps can help organizations to take 

advantage of the full potential that modern software offers to organizations in all industries, while 

minimizing risk.

Sincerely,

JEFF WILLIAMS
CTO AND CO-FOUNDER 

DAVID LINDNER
CHIEF INFORMATION SECURITY OFFICER

Already an accelerating trend before the world-changing events of 2020, digital transformation is now 

moving at breakneck speed to bring radical change to the way organizations conduct business. 

Applications are at the heart of this phenomenon, delivering new experiences for both business 

customers and consumers while improving operational efficiency and creating new revenue streams.

Somewhat hidden in this process are millions of software developers, who have honed their craft to 

the point that it functions as a fast and efficient “software factory,” with extensive automation and 

standardization of processes across the software development life cycle (SDLC). Using methodologies like 

Agile and DevOps, they have accelerated release cycles while improving quality. One practice that 

contributes to this efficiency is code reuse, which includes open-source libraries and frameworks. The 

typical application today contains dozens and quite often hundreds of libraries, many of which provide 

indispensable core functionality and help propel digital transformation.

But the efficiency brought about by the extensive use of libraries is not without risk. The increased reliance 

on applications has not escaped the attention of cyber criminals, who have shifted more attention to this 

attack vector. The massive SolarWinds attack that was revealed in late 2020 is a stark reminder of the 

vulnerability of the software supply chain and the risk it poses.

Recognizing the importance of securing the software supply chain, Contrast Labs is pleased to announce 

the publication of research findings regarding open-source utilization and risk. The analysis is based on 

telemetry from tens of thousands of real-world applications and application programming interfaces (APIs) 

that are assessed and protected by Contrast solutions. This data comes from real-world examples of the 

software supply chain.

The report identifies five areas of risk around open-source libraries and frameworks: active and inactive 

libraries, active and inactive library classes, library age, open-source vulnerabilities, and licensing risk. 

Each of these areas brings risk to organizations that can hamper operational efficiency, the ability to 

prevent and thwart attacks by cyber criminals, and avoid legal problems regarding software ownership.

022021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT



02  |  EXECUT IVE  S UM M A RY

03

As open-source libraries continue to increase in importance to developers in producing business-critical 

software against aggressive deadlines, such libraries proliferate in number and in complexity. The 2021 

Contrast Labs Open-source Security Report uses telemetry from actual applications protected by Contrast 

OSS and Contrast Assess to reveal key trends about library usage, vulnerabilities, and best practices from 

thousands of real-world software supply chains. Key findings include:

• While the average application contains 118 libraries, the more important metric is that only 38% of  

      libraries are active—that is, used by the application. Further, only 31% of library classes within 

 active libraries are actually ever invoked by a given piece of software. While libraries comprise a large 

 percentage of the lines of code present in an application, only a tiny fraction of that code is actually 

 used by the application.

• The average library uses a version that is 2.5 years old. This increases the risk of unaddressed 

 vulnerabilities while expanding the amount of work required when an update is finally done.

• The average Java application has 50 open-source library vulnerabilities, and the odds are 16%   

 that a given Java library in an application will have a vulnerability. 

• Software composition analysis (SCA) tools, which do not differentiate between vulnerabilities in 

 inactive libraries and classes and active ones, return false positives when they identify a CVE that 

 poses no risk. The false positivity rate is 23% for Java applications, 13% for .NET applications, 

 and 69% for Node applications.

• High-risk licenses are present in 69% of Java applications and 33% of Node applications. These 

 expose organizations to significant legal risk by legally obligating the license holder to make any 

 resulting software open source.

2021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT



042021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

Given recent vulnerability exposures and attacks of the software supply chain, it is imperative that 

organizations pay much closer attention to the open-source code used in their applications. There are 

significant risks in open-source libraries, but identifying and remediating the ones that matter requires a 

different approach, one that provides a comprehensive picture of active and inactive libraries and classes, 

library age, vulnerabilities, and licensing issues. Legacy SCA and application security tools simply do not 

provide the level of accuracy and observability required—especially when the C-suite and boards of 

directors are pressing for greater business acceleration.  

Lorem ipsum



K EY  F I ND INGS

052021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

KEY  F I ND INGS

L IBRARY  USE

The average application contains 118 open-source libraries.

Only 38% of libraries present in applications are used; 
Node applications are the lowest of all languages with only 24%.

118

38%

32%

2.5 The average library uses a version that is 2.5 years old.

Only 32% of classes are invoked by active Java libraries.

ACT IVE/ INACT IVE  L IBRAR IE S

ACT IVE/ INACT IVE  L IBRARY  C LASSE S

L IBRARY  AGE



KEY  F I ND INGS

062021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

K EY  F I ND INGS

OPEN- S O URCE  VULNE RA B IL IT IE S

FALSE  POS IT IV ITY  RATES  F OR  LE GACY  S CA  TOOLS :

The average Java application has 50 open-source vulnerabilities.

Java libraries in applications have a 16% chance of having a 
Critical or Major vulnerability.

50

16%

44%

23%

The odds of an application having a vulnerability in a Java library
increase from 7% to 44% as the library age goes from 1 year to 4 years..
 

13%
69%

FOR JAVA

FOR .NET

FOR NODE

LICENS ING

69% 69% of Java applications and 33% of Node applications 
include a library with a high-risk license.

99% 99% of organizations have at least one high-risk Java license.



072021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

The discipline of software development has dramatically improved its speed and efficiency in recent years. 

Methodologies like Agile and DevOps leverage principles from manufacturing to streamline and automate 

as much of the software development life cycle (SDLC) as possible. These advances not only enable 

software to be developed much more quickly than a decade ago but have also improved the quality of the 

software from both a back end and user experience perspective. The transformation has been so 

complete that the term “software factory” has recently been resurrected to describe the operation.1 

Like a well-run manufacturing floor, today’s software factory uses a unified team for every aspect of the 

SDLC, from development to operations. The software factory team uses clear policies, automated 

processes, and standardized development tools. And importantly, they leverage software reuse as a 

deliberate strategy. While some of that repurposed code comes from internal repositories, much of it 

comes from open-source libraries.

The efficiency and effectiveness gains from this approach are real. A recent McKinsey report found that 

open-source adoption was the biggest differentiator for organizations in the top quartile of their Developer 

Velocity Index (DVI).2  As the authors of the study note, “We found that building an open-source culture is 

about more than using open-source software within the code; it extends to encouraging contribution and 

03  |  INTRO D UCT IO N



082021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

participation in the open-source community as well as adopting a similar approach to how code is shared 

internally—that is, strong InnerSource adoption.”3 

  

SECURITY CHALLENGES FOR OPEN-SOURCE LIBRARIES AND FRAMEWORKS

But this increase in efficiency is not without cost. The massive SolarWinds application attack4 is a 

reminder that the software factory is a target for cyber criminals. The 2020 Verizon Data Breach 

Investigations Report found that 43% of data breaches this past year were the result of a web application 

vulnerability—a figure that more than doubled over the previous year.5 And the number of open-source 

vulnerabilities logged into the Common Vulnerabilities and Exposures (CVE) database has increased 

dramatically in recent years.

Another security challenge involves the increasing complexity of library use in applications. Imagine a 

library with several functions—A, B, and C. This library relies on numerous other libraries (called 

“transitive dependencies”) to implement those functions. A developer wanting to use function A will 

inadvertently include all the libraries that support functions B and C in the application. 

These complex dependency trees make developers reluctant to remove or update old libraries, fearful that 

doing so will have unforeseen downstream consequences. In other cases, they waste time by updating 

libraries that are not used by the software in any way. 

INADEQUACIES OF LEGACY OPEN-SOURCE SECURITY APPROACHES

Despite these increasing complications, most organizations still employ open-source security strategies 

that were developed many years ago, when open-source software was less complex, comprised a smaller 

part of applications, and was a part of a more deliberate development process. Legacy software 

composition analysis (SCA) tools depend on periodic static scans of either built applications or the build 

files in code repositories. These scans are disruptive to modern native development processes. Worse, 

they show data from just a specific point in time rather than providing continuous analysis. The scans are 

out of date the first time there is a library change or update.

But perhaps most detrimental is legacy SCA tools’ lack of visibility into which libraries and classes are 

actually used by the software, how they are used, and what version is in use. As a result, all vulnerabilities 



092021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

of each severity level are presented as equally risky, when some pose no risk. Just as false positives from 

application security scanning tools cause developers and security experts to waste time on items that pose no 

risk, a lack of visibility into software dependencies creates false positives when SCA tools identify CVEs in code 

that is not used by the software. Both types of false positives waste an organization’s staff time and potentially 

can delay the remediation of vulnerabilities that truly pose risk.

As the findings of this report clearly demonstrate, full observability of the all open-source library content in each 

application is a necessity for ensuring the security of applications for employees, partners, and customers.

METHODOLOGY OF THIS STUDY

The data in this report is based on aggregate telemetry collected by Contrast Labs from Java, .NET, and Node 

applications covered by Contrast OSS and Contrast Assess. From this data, we identify and quantify five layers 

of risk faced by users of open-source software:

 • Risk from active and inactive libraries

 • Risk from active and inactive library classes

 • Risk due to library age

 • Risk due to open-source vulnerabilities

 • Risk associated with licensing



10

04  |  L IB RARY  CO UN TS :  IND IC A T IVE  OF
COMPLEX ITY ,  NO T  NE C E SSAR ILY  R ISK

Many observers would be surprised at the number of third-party libraries that are included in a typical 

piece of software. Contrast OSS telemetry data shows that the average application contains 118 libraries. 

While nearly one-quarter (24%) of applications contain fewer than 25 libraries, the same percentage have 

more than 150. At the same time, 52% of applications contain fewer than 75 libraries (Figure 1). This 

highlights the varying open-source risk from application to application and speaks to the increasing 

complexity of software today.  

2021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

0—
24

25
—

49

50
—

74

75
—

99

10
0—

12
4

12
5—

14
9

15
0—

17
4

17
5—

19
9

20
0—

22
4

22
5—

24
9

25
0—

27
4

27
5—

29
9

30
0—

32
4

32
5—

34
9

35
0+

37%

7%

0%

5%

10%

15%

20%

25%

30%

35%

40%

8% 7% 8%
6%

4% 3% 3% 2% 2% 3%
1% 1%

6%

%
 O

F 
AP

PL
IC

AT
IO

NS

Figure 1: Percentage of overall applications by library count.

NUMBER OF LIBRARIES PRESENT



 112021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

One area of discrepancy that will be noted throughout the report is that libraries for the Node language are 

much more numerous than with Java and .NET, as each functionality tends to be a separate library with 

Node rather than a segment of a library. In fact, 85% of Node applications have more than 350 libraries 

(Figure 2), with some extending into the thousands. On the other end of the spectrum, nearly all .NET 

applications include fewer than 25 libraries and the average is just six libraries. This is because the .NET 

language is highly standardized and controlled by a single entity—Microsoft. Sitting between the two are 

Java applications, which have an average of 125 libraries per application.

JAVA .NET
NODE TOTAL

Figure 2: Percentage of applications containing different numbers of libraries, by language.

LI
BR

AR
Y 

CO
UN

T

.NET

2%

11%

1%

2%

3%
3%

4%

4%

12%

2%
2%

6%

5%

1

2

3

4

5

6

7

8

9

10

11

12

13

14+

43%

NODE

6%

7%

1%

1%

5%

9%
12%

11%

9%

7%

6%
7%

4%

14%

0—99

100—199

200—299

300—399

400—499

500—599

600—699

700—799

800—899

900—999

1,000—1,099

1,100—1,199

1,200—1,299

1,300—1,399

1,400+

1%

2%

4%

1%

2%

2%

6%
9%

5%

11%

9%

JAVA

17%

3%
5%

12%

11%

0—24

25—49

50—74

75—99

100—124

125—149

150—174

175—199

200—224

225—249

250—274

275—299

300—324

325—349

350+

% OF APPS WITH LIBRARIES PRESENT Figure 3: Percentage of applications by library count, by language.

NUMBER OF LIBRARIES PRESENT

37%

95%

17%

0%

9%

4%

0%

7%

0%

12%

0%

5%

10%

15%

20%

25%

30%

35%

40%

8%

11%

0%

1%

7%

11%

0% 0%

8% 9%

0%

2%

6%

3%

6%

0%

4%
5%

0%

2%
3%

5%

0%

1%

3% 3%

0%

1%
2% 2% 2%

0%

1%

4%

0%

1%

3%
2%

0%

3%

1% 1%

0%

3%

1%
2%

0%

82%

6%

0%

%
 O

F 
AP

PL
IC

AT
IO

NS



122021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

LIBRARY USAGE BY LANGUAGE

While the mean Java application contains 125 libraries, the median is 100, with 50% of applications 

having fewer than that number (Figure 3). Because the mean is higher than the median, the interpretive 

result means there are a select number of Java applications with a disproportionately high rate of library 

vulnerabilities. Specifically, 16% of Java applications have more than 200 libraries, and 8% have more 

than 250. The slf4j-api library is found in 79% of Java applications, and another 10 libraries are found in 

more than 70% (Figure 4). All of the top 25 libraries are found in a majority of Java applications. This 

means that an attacker who infiltrates a single library can potentially compromise a large percentage of 

the world’s Java applications.

% OF APPS WITH LIBRARIES PRESENT

Figure 4: Percentage of Java applications

containing the top 25 libraries.

55%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

58%

73%

59%

73%

59%

72%

73%

74%

79%

57%

58%

65%

72%

72%

74%

58%

57%

57%

56%

55%

60%

61%

71%

73%

SLF4J-API

SPRING-CORE

SPRING-BEANS

COMMONS-CODEC

JACKSON-CORE

JACKSON-DATABIND

SPRING-AOP

SPRING-WEB

JACKSON-ANNOTATIONS

SPRING-CONTEXT

SPRING-EXPRESSION

SPRING-WEBMVC

SPRING-TX

JBOSS-LOGGING

CLASSMATE

SNAKEYAML

COMMONS-IO

HTTPCORE

GUAVA

COMMONS-LANG3

HTTPCLIENT

JUL-TO-SLF4J

COMMONS-LOGGING

SPRING-BOOT

COMMONS-LANG



132021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

The streamlined infrastructure supporting .NET development is readily apparent when one looks at library 

counts. While nearly 2 in 10 applications (18%) have 10 or more libraries, a solid majority (55%) include 2 

or fewer (Figure 3). By far the most common library, System.ServiceModel.Web.dll, is present in 45% of 

applications. No other library is included in as many as 20% of applications (Figure 5), but all libraries 

present in more than 5% of .NET applications are controlled by Microsoft.

As noted, Node is structured in such a way that each library is smaller and more focused. As a result, 

65% of Node applications have more than 500 libraries and 20% have more than 1,000 (Figure 3). The 

top 25 Node libraries are all present in 92% or more of Node applications (Figure 6). If any of these 

libraries were to be compromised, this would pose extraordinary risk to Node applications around the 

world (a dramatically higher risk than in the case of .NET applications).

Figure 5: Percentage of .NET applications 

containing the top 25 libraries.

% OF APPS WITH LIBRARIES PRESENT

MOST POPULAR .NET LIBRARIES BY % OF APPS

6%

6%

7%

13%

8%

13%

10%

13%

13%

19%

45%

7%

8%

11%

12%

12%

17%

8%

7%

7%

7%

10%

10%

12%

16%

SYSTEM.SERVICEMODEL.WEB.DLL

SYSTEM.DIAGNOSTICS.DIAGNOSTICSOURCE.DLL

SYSTEM.MEMORY.DLL

SYSTEM.BUFFERS.DLL

SYSTEM.VALUETUPLE.DLL

SYSTEM.NUMERICS.VECTORS.DLL

SYSTEM.WEB.HTTP.DLL

MICROSOFT.OWIN.DLL

MICROSOFT.IDENTITYMODEL.TOKENS.DLL

MICROSOFT.APPLICATIONINSIGHTS.DLL

MICROSOFT.IDENTITYMODEL.LOGGING.DLL

SYSTEM.THREADING.TASKS.EXTENSIONS.DLL

MICROSOFT.OWIN.HOST.SYSTEMWEB.DLL

MICROSOFT.OWIN.SECURITY.DLL

SYSTEM.IDENTITYMODEL.TOKENS.JWT.DLL

MICROSOFT.IDENTITYMODEL.JSONWEBTOKENS.DLL

SYSTEM.RUNTIME.COMPILERSERVICES.UNSAFE.DLL

SYSTEM.TEXT.REGULAREXPRESSIONS.DLL

SYSTEM.RUNTIME.DLL

MICROSOFT.BCL.ASYNCINTERFACES.DLL

SYSTEM.GLOBALIZATION.DLL

SYSTEM.TEXT.ENCODINGS.WEB.DLL

SYSTEM.COLLECTIONS.IMMUTABLE.DLL

SYSTEM.CORE.DLL

SYSTEM.COLLECTIONS.DLL

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%



142021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

As noted, Node is structured in such a way that each library is smaller and more focused. As a result, 

65% of Node applications have more than 500 libraries and 20% have more than 1,000 (Figure 3). The 

top 25 Node libraries are all present in 92% or more of Node applications (Figure 6). If any of these 

libraries were to be compromised, this would pose extraordinary risk to Node applications around the 

world (a dramatically higher risk than in the case of .NET applications).

Figure 6: Percentage of Node applications

containing the top 25 libraries.

% OF APPS WITH LIBRARIES PRESENT

88% 90% 92% 94% 96% 98%

92%

93%

97%

93%

97%

94%

97%

98%

98%

98%

93%

93%

95%

95%

96%

98%

93%

93%

93%

93%

93%

94%

94%

95%

98%

DEBUG

MS

INHERITS

SAFE-BUFFER

MIME-DB

MIME-TYPES

QS

SEMVER

SAFER-BUFFER

ICONV-LITE

LODASH

METHODS

COOKIE

ON-FINISHED

PATH-TO-REGEXP

EE-FIRST

IPADDR.JS

MIME

NEGOTIATOR

PARSEURL

DEPD

HTTP-ERRORS

SETPROTOTYPEOF

STATUS

CORE-UTIL-IS

100%



152021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

COMPLEXITY AS A CONTRIBUTOR TO RISK

By all accounts, the use of open-source libraries has exploded in the past several years.6 For example, a 

recent study by GitHub found that 65% of all Java projects, 90% of .NET projects, and 95% of JavaScript 

projects (including Node) on that platform use open-source software.7 But measuring open-source risk for 

a specific application is more complicated than simply counting libraries. Indeed, this entire study 

describes in great detail the fact that different libraries—and different parts of the same library—pose 

different levels of risk to an organization. 

Yet while there is no direct correlation between the number of libraries and the amount of risk, the 

complexity that comes from a proliferation of libraries and multilayered dependency trees can increase 

risk. Even without cybersecurity considerations, organizations may benefit from deliberate efforts to 

declutter application code and practice basic hygiene on open-source libraries. The increasing focus on 

web applications as an attack vector for cyber criminals makes such hygiene even more important.



162021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

05  |  RISK LAYER 1: ACTIVE AND INACTIVE LIBRARIES

While the number of libraries is high, the percentage of those libraries that are active is the more 

important metric and represents the first layer of open-source risk. Overall, only 38% of libraries present 

in applications protected by Contrast OSS and Contrast Assess are active (Figure 7). This means that 62% 

of libraries found in applications are not used by the software in any way. Again, Node applications skew 

this average somewhat. More than three-quarters (76%) of Node libraries found in applications are 

inactive, while that number is 58% with Java and just 33% with .NET. 

Why do applications contain so many libraries that are not used in any way? As described above, most 

inactive libraries in applications occur when multiple additional libraries are attached to an active 

library—but do not contribute to the functionality for which the library was selected. This can lead to 

multilayered dependency trees and increased complexity. Node packages in particular introduce many 

transitive dependencies. Another reason that libraries may be inactive is that later revisions to a piece of 

software might bypass libraries that were active in a prior version. 



172021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

ACTIVE AND INACTIVE LIBRARIES BY LANGUAGE

While the average Java application contains 125 libraries, 61% of Java applications have fewer than 50 

active libraries (Figure 8). And while all the top 25 Java libraries are present in a majority of applications, 

the percent of applications where these libraries are active is much lower (Figure 9). Only 12 of the top 25 

Java libraries are active in more than half of applications.

Figure 7: Percent of libraries active
per application, by language.

PERCENT OF LIBRARIES THAT ARE ACTIVE

NODE TOTALJAVA .NET

42%

67%

24%

38%

Figure 8: Percentage of applications by active library count, by language.

LI
BR

AR
IE

S

.NET

1%

6%
1%

2%

3%
3%

2%

3%

16%

2%
1%

7%
4%

1
2
3
4
5
6
7
8
9

10
11
12
13

14+

49%

NODE

61%
22%

00—99
100—199
200—299
300—399
400—499
500—599
600—699
700—799
800—899
900—999

1,000—1,099
1,100—1,199
1,200—1,299
1,300—1,399

1,400+

17%

2%
5%

1%

6%

23%

JAVA

38%

15%
9%

0—24
25—49
50—74
75—99

100—124
125—149
150—174
175—199

200—224
225—249
250—274
275—299
300—324
325—349

350+

% OF APPS WITH ACTIVE LIBRARIES



182021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

Amazingly, 49% of .NET applications have just one active library (Figure 8). The most common library, 

System.ServiceModel.Web.dll, is active in 37% of applications (Figure 10). Beyond that, only one library is 

active in more than 15% of applications, and an additional five are active in more than 10%.

% OF APPS WITH LIBRARY WHERE 
LIBRARY IS ACTIVE

65%

70%

73%

27%

88%

52%

95%

86%

94%

70%

71%

46%

96%

93%

84%

78%

67%

37%

69%

49%

72%

47%

83%

72%

36%

SLF4J-API

SPRING-CORE

SPRING-BEANS

COMMONS-CODEC

JACKSON-CORE

JACKSON-DATABIND

SPRING-AOP

SPRING-WEB

JACKSON-ANNOTATIONS

SPRING-CONTEXT

SPRING-EXPRESSION

SPRING-WEBMVC

SPRING-TX

JBOSS-LOGGING

CLASSMATE

SNAKEYAML

COMMONS-IO

HTTPCORE

GUAVA

COMMONS-LANG3

HTTPCLIENT

JUL-TO-SLF4J

COMMONS-LOGGING

SPRING-BOOT

COMMONS-LANG

0% 20% 40% 100%60% 80%

Figure 9: Percentage of 
Java applications with 
active libraries in the top 25, 
in descending popularity 
order.



192021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

With Node applications, while the application count averages 537, none of the Node applications 

protected by Contrast OSS and Contrast Assess have more than 300 active libraries, and 78% have fewer 

than 200 (Figure 8). And while the top 25 libraries are present in more than 90% of applications, the most 

common active library is only present in 42% of applications (Figure 11). This reveals that many of the 

numerous Node libraries found in applications are not actually used.

Figure 10: Percentage 
of .NET applications 
with active libraries 
in the top 25, in 
descending popularity 
order.

% OF APPS WITH LIBRARY WHERE LIBRARY IS ACTIVE

81%

0%

96%

0%

94%

72%

55%

84%

98%

41%

84%

78%

78%

73%

96%

87%

74%

0%

42%

0%

73%

97%

100%

83%

62%

SYSTEM.SERVICEMODEL.WEB.DLL

SYSTEM.DIAGNOSTICS.DIAGNOSTICSOURCE.DLL

SYSTEM.MEMORY.DLL

SYSTEM.BUFFERS.DLL

SYSTEM.VALUETUPLE.DLL

SYSTEM.NUMERICS.VECTORS.DLL

SYSTEM.WEB.HTTP.DLL

MICROSOFT.OWIN.DLL

MICROSOFT.IDENTITYMODEL.TOKENS.DLL

MICROSOFT.APPLICATIONINSIGHTS.DLL

MICROSOFT.IDENTITYMODEL.LOGGING.DLL

SYSTEM.THREADING.TASKS.EXTENSIONS.DLL

MICROSOFT.OWIN.HOST.SYSTEMWEB.DLL

MICROSOFT OWIN SECURITY.DLL

SYSTEM.IDENTITYMODEL.TOKENS.JWT.DLL

MICROSOFT.IDENTITYMODEL.JSONWEBTOKENS.DLL

SYSTEM.RUNTIME.COMPILERSERVICES.UNSAFE.DLL

SYSTEM.TEXT.REGULAREXPRESSIONS.DLL

SYSTEM.RUNTIME.DLL

MICROSOFT.BCL.ASYNCINTERFACES.DLL

SYSTEM.GLOBALIZATION.DLL

SYSTEM.TEXT.ENCODINGS.WEB.DLL

SYSTEM.COLLECTIONS.IMMUTABLE.DLL

SYSTEM.CORE.DLL

SYSTEM.COLLECTIONS.DLL

0% 20% 40% 60% 80% 100%



202021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

% OF APPS WITH ACTIVE LIBRARIES

Figure 11: Percentage of Node applications with active libraries in the top 25, in descending popularity order.

ACTIVE AND INACTIVE LIBRARIES: TWO KINDS OF RISK

Organizations face risk from both their active and their inactive libraries. The libraries actually used by the 

software can potentially have vulnerabilities that bring risk if they are not addressed. And while 

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

24%

31%

40%

39%

33%

40%

37%

31%

31%

42%

39%

39%

41%

42%

25%

27%

39%

40%

40%

23%

40%

39%

35%

35%

36%

DEBUG

MS

INHERITS

SAFE-BUFFER

MIME-DB

MIME-TYPES

QS

SEMVER

SAFER-BUFFER

ICONV-LITE

LODASH

METHODS

COOKIE

ON-FINISHED

PATH-TO-REGEXP

EE-FIRST

IPADDR.JS

MIME

NEGOTIATOR

PARSEURL

DEPD

HTTP-ERRORS

SETPROTOTYPEOF

STATUSES

CORE-UTIL-IS



212021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

vulnerabilities in inactive libraries pose no risk, companies can waste many hours of staff time remediating 

those vulnerabilities if they do not know which libraries are active. In addition to this operational 

inefficiency, fixing vulnerabilities that pose no risk can also delay action on vulnerabilities that can be 

exploited.

Another insight that can be gleaned from this data is that applications containing more libraries tend to 

have a lower percentage of those libraries that are active. Again, this could suggest that in these cases, 

legacy code needs to be cleaned up to reduce the total code surface area and reduce risk.

Of course, both of these efforts at library hygiene require visibility into which libraries are active and which 

are not.



222021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

06  |  R ISK  LAY ER  2 :  AC T IV E  A ND  INAC T IV E  
L IBRARY  CLASS ES

While a given library may be active in an application, only a very small part of that library is active in many 

cases. On average, across all languages, only 31% of classes in active libraries are invoked (Figure 12). 

This state of affairs can be quantified by looking at library classes that are active in an application. Classes 

are logical collections of code within libraries that perform related tasks. Vulnerabilities that may exist in 

inactive classes in a library—even if the library itself is active—cannot be exploited successfully by cyber 

criminals.

Because of differences in the way they are structured, the number of classes varies widely depending on 

the language being used. On average, Java libraries contain 279 classes, .NET libraries contain 138 

classes, and Node libraries contain just eight classes (Figure 13). But only 32% of Java classes, 67% of 

.NET classes, and an astounding 5% of classes in Node libraries are invoked by active libraries. Clearly, 

even in active libraries, much of the code is not used by an application—especially with Java and Node.

 



2021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

LIBRARY CLASSES BY LANGUAGE

For Java libraries, less than 30% of classes are active in a majority (53%) of libraries (Figure 14). Several of the 

top 25 Java libraries have 37% or 38% of their classes active, but others are in the single digits (Figure 15). 

One piece of good news is that the above averages obscure the fact that 48% of .NET libraries and 68% of 

Node libraries have more than 90% of their classes active (Figure 14). However, in reality, the percentage of 

active classes varies widely depending on the specific library, as shown in Figures 15 and 16.

23

JAVA .NET NODE TOTAL

279

90

138

92

8

203

63

0.4

38%

0

50

100

150

200

250

300

CLASSES PER LIBRARY

INVOKED CLASSES PER 
LIBRARY ACTIVE LIBRARY

Figure 13: Classes per library and

active classes per active library.

Figure 12:  Percent of classes per 

active library, per application.

% ACTIVE CLASSES

% INACTIVE CLASSES

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

JAVA .NET NODE TOTAL

68%

32%

33%

67%

95%

5%

69%

31%



22

2021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

Figure 14: Percentage of active classes, 

by language.

%
 O

F 
LI

BR
AR

IE
S

70%

0%

10%

20%

30%

40%

50%

60%

JAVA

11%12%

4% 3% 4%
7%

10%9%10%

31%

.NET

4%5% 4%

9%

48%

9%

4%3%3%

11%

NODE

4%4%
1% 1%

68%

1%

9%

1%

6%5%

TOTAL

9%10%

3% 3%

23%

5%
9%

7%8%

23%

% OF ACTIVE CLASSES

<10% 10%—19% 20%—29% 30%—39% 40%—49%

50%—59% 60%—69% 70%—79% 80%—89% 90%+

242021 contrast labs open-source security report



Figure 15: Percent of classes invoked by active libraries

for top 25 Java libraries, in descending popularity order.

USAGE METRICS FOR MOST COMMON JAVA LIBRARIES

SL
F4

J-
AP

I

SP
RI

NG
-C

OR
E

SP
RI

NG
-B

EA
NS

CO
M

M
ON

S-
CO

DE
C

JA
CK

SO
N-

CO
RE

JA
CK

SO
N-

DA
TA

BI
ND

SP
RI

NG
-A

OP

SP
RI

NG
-W

EB

JA
CK

SO
N-

AN
NO

TA
TI

ON
S

SP
RI

NG
-C

ON
TE

XT

SP
RI

NG
-E

XP
RE

SS
IO

N

SP
RI

NG
-W

EB
M

VC

SP
RI

NG
-T

X

JB
OS

S-
LO

GG
IN

G

CL
AS

SM
AT

E

22%

28%
31%

5%

34% 33%

22% 21% 21% 21%

38%

SN
AK

EY
AM

L

CO
M

M
ON

S-
IO

HT
TP

CO
RE

GU
AV

A

CO
M

M
ON

S-
LA

NG
3

HT
TP

CL
IE

NT

JU
L-

TO
-S

LF
4J

CO
M

M
ON

S-
LO

GG
IN

G

SP
RI

NG
-B

OO
T

CO
M

M
ON

S-
LA

NG

15%

3%

26%

7%
4%

22%

37%

17%

24%

6%

17%
14%

38%

%
 O

F 
LI

BR
AR

Y 
CL

AS
SE

S 
US

ED

45%

40%

35%

30%

25%

20%

15%

10%

5%

0%

32% OF
CLASSES
USED PER

ACTIVE JAVA
LIBRARY, ON

AVERAGE

29%

2021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT 25



Figure 16: Percent of classes invoked by active libraries

for top 25 .NET libraries, in descending popularity order.

USAGE METRICS FOR MOST COMMON .NET LIBRARIES

67% OF
CLASSES USED

PER ACTIVE
.NET LIBRARY,
ON AVERAGE

120%

100%

80%

60%

40%

20%

0%

46% 48%

SY
ST

EM
.S

ER
VI

CE
M

OD
EL

.W
EB

.D
LL

SY
ST

EM
.D

IA
GN

OS
TI

CS
.D

IA
GN

OS
TI

CS
OU

RC
E.

DL
L

SY
ST

EM
.M

EM
OR

Y.
DL

L

SY
ST

EM
.B

UF
FE

RS
.D

LL

SY
ST

EM
.V

AL
UE

TU
PL

E.
DL

L

SY
ST

EM
.N

UM
ER

IC
S.

VE
CT

OR
S.

DL
L

SY
ST

EM
.W

EB
.H

TT
P.

DL
L

M
IC

RO
SO

FT
.O

W
IN

.D
LL

M
IC

RO
SO

FT
.ID

EN
TI

TY
M

OD
EL

.T
OK

EN
S.

DL
L

M
IC

RO
SO

FT
.A

PP
LI

CA
TI

ON
IN

SI
GH

TS
.D

LL

M
IC

RO
SO

FT
.ID

EN
TI

TY
M

OD
EL

.L
OG

GI
NG

.D
LL

SY
ST

EM
.T

HR
EA

DI
NG

.TA
SK

S.
EX

TE
NS

IO
NS

.D
LL

M
IC

RO
SO

FT
.O

W
IN

.H
OS

T.
SY

ST
EM

W
EB

.D
LL

M
IC

RO
SO

FT
.O

W
IN

.S
EC

UR
IT

Y.
DL

L

SY
ST

EM
.ID

EN
TI

TY
M

OD
EL

.T
OK

EN
S.

JW
T.

DL
L

M
IC

RO
SO

FT
.ID

EN
TI

TY
M

OD
EL

.J
SO

NW
EB

TO
KE

NS
.D

LL

SY
ST

EM
.R

UN
TI

M
E.

CO
M

PI
LE

RS
ER

VI
CE

S.
UN

SA
FE

.D
LL

SY
ST

EM
.T

EX
T.

RE
GU

LA
RE

XP
RE

SS
IO

NS
.D

LL

SY
ST

EM
.R

UN
TI

M
E.

DL
L

M
IC

RO
SO

FT
.B

CL
.A

SY
NC

IN
TE

RF
AC

ES
.D

LL

SY
ST

EM
.G

LO
BA

LI
ZA

TI
ON

.D
LL

SY
ST

EM
.T

EX
T.

EN
CO

DI
NG

S.
W

EB
.D

LL

SY
ST

EM
.C

OL
LE

CT
IO

NS
.IM

M
UT

AB
LE

.D
LL

SY
ST

EM
.C

OR
E.

DL
L

SY
ST

EM
.R

UN
TI

M
E.

CA
CH

IN
G.

DL
L

65%
71%

50%

62%
57%

81% 81% 82% 82%

63%

72% 74%

61%

71%

0% 0% 0%

39%

99%

24%
31%

13%

80%

%
 O

F 
LI

BR
AR

Y 
CL

AS
SE

S 
US

ED

2021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT 26



272021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

Figure 17: Percent of classes invoked

by active libraries for top 25 Node libraries,

in descending popularity order.

USAGE METRICS FOR MOST COMMON NODE LIBRARIES

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

67% 65% 66% 67%

88%

80%

55% 58%

46%

100%
98%

84%

78%
74% 74%

100% 100% 100% 100% 100% 100% 100% 100% 100%99%

DE
BU

G

M
S

SA
FE

-B
UF

FE
R

IN
HE

RI
TS

M
IM

E-
DB

M
IM

E-
TY

PE
S QS

SE
M

VE
R

SA
FE

R-
BU

FF
ER

M
ET

HO
DS

IC
ON

V-
LI

TE

LO
DA

SH

CO
OK

IE

ON
-F

IN
IS

HE
D

PA
TH

-T
O-

RE
GE

XP

EE
-F

IR
ST

IP
AD

DR
.J

S

NE
GO

TI
AT

OR

M
IM

E

PA
RS

EU
RL

ST
AT

US
ES

HT
TP

-E
RR

OR
S

DE
PD

SE
TP

RO
TO

TY
PE

OF

CO
RE

-U
TI

L-
IS

5% OF CLASSES
USED PER

ACTIVE NODE
LIBRARY, ON

AVERAGE

%
 O

F 
LI

BR
AR

Y 
CL

AS
SE

S 
US

ED



282021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

07  |  R ISK  LAY ER  3 :  L IBRARY  A G E

As new vulnerabilities are discovered in libraries and added to the Common Vulnerabilities and Exposures 

(CVE) database, new versions of those libraries are released that remediate these issues. Ideally, 

organizations would immediately update the library in all applications, but there are reasons this is not 

advisable in some cases. Some libraries release new versions before adequate testing has been done, 

resulting in unstable code. In other instances, a library update might have downstream impacts on 

functionality that has nothing to do with the CVE being addressed. Notwithstanding, organizations are 

further behind on library updates than they should be.

One problem in compiling data on library age for this report is that each framework has a unique 

numbering system and frequency for new library releases. As a result, simply counting the number of 

versions that have been released since the version found in a specific application does not provide an 

“apples to apples” comparison across libraries. Instead, we opted to measure the chronological age of 

each library version—specifically, how many days ago a specific version was released.



292021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

TYPICAL LIBRARIES ARE YEARS OUT OF DATE

Among all applications protected by Contrast OSS and Contrast Assess, the average library has not been 

updated in 937 days, approximately two and a half years (Figure 18). Among active libraries, the news is 

only slightly better—892 days or 2.4 years. Further, more than 3 in 10 (31%) of libraries currently in use 

are more than three years old, with 6% more than five years old (Figure 19). Only 28% of active libraries 

are less than a year old.

The differences between languages are also clear in Figures 18 and 19. Java libraries are nearly three 

years old on average—2.9 years for all libraries and 2.8 years for active ones. And while 45% of Java 

libraries are less than two years old, 37% are more than three years old. .NET libraries, on the other hand, 

are barely 16 months old on average, and just 21% are more than two years old. Node libraries are in 

between, with the average library being just under two years behind.

Figure 18: Average years behind for libraries, by language.

YE
AR

S

ACTIVE LIBRARIES

ALL LIBRARIES

-

0.5

1.0

1.5

2.0

2.5

3.O

3.5

JAVA .NET NODE TOTAL

2.9 2.8

1.3 1.4

1.8 1.9

2.6

2



302021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

OLDER LIBRARIES INCREASE RISK AND REDUCE AGILITY

Keeping libraries up to date is a part of the basic hygiene that is critical for the continued health of an 

application. This is especially important with libraries for which a high percentage of classes is being 

used, and are therefore deeply integrated into an application. Needless to say, visibility into the age of 

each library and the percentage of classes in use is essential to conduct this basic maintenance 

effectively.

Failure to keep libraries updated over time not only increases risk to an organization but also makes library 

updates much more difficult and time-consuming when they are finally done. When a library stays 

dormant in an application for multiple years, any new vulnerability is difficult to fix because so much code 

has been built over it. Updating a years-old version of a library will require significant work by the 

development team.

Figure 19: Percent of active libraries by
number of years behind, by language.

YEARS BEHIND

0%

0 1 2 3 4 5 6 7 8 9

10%

20%

30%

40%

50%

60%

27%
24%

18%
14%

8% 4% 2% 2%
1% 1% 1%%

 O
F 

AC
TI

VE
 L

IB
RA

RI
ES

10

JAVA .NET NODE TOTAL



08  |  R ISK  LAY ER  4 :  V U LNE RA B IL IT IE S
IN  L IB RAR IES

Preventing and remediating software vulnerabilities is the whole point of application security, and it is 

important for organizations to have a picture of vulnerabilities present in their third-party libraries. Among 

applications protected by Contrast OSS and Contrast Assess, an astounding 94% of Java applications and 

90% of Node applications have at least one CVE (Figure 20). The news is especially bad for Java, where 

45% of applications have a Critical CVE. 

312021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

Figure 20: Percentage of applications with 
at least one CVE, by language.

JAVA

94%

.NET

7%

NODE

90%

TOTAL

71%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%



322021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

Overall, the average application has 34 CVEs. However, this number is misleading because Java 

applications have 50 vulnerabilities on average (Figure 21). There are just five CVEs per Node application, 

and just one vulnerability for every eight .NET applications.

Drilling down to individual active libraries, the number of vulnerabilities also varies greatly by programming 

language. Nearly 1 in 12 active Java libraries (8%) contain a CVE, while just 2% of active Node libraries 

and 1% of active .NET libraries have one (Figure 22).

JAVA

CV
ES

.NET NODE TOTAL

0

10

20

30

40

50

60

50

0.12

5

34

Figure 22: Percentage of active libraries with CVEs, by language.

Figure 21: Average distinct vulnerabilities per application, by language.

JAVA

8%

%
 O

F 
AC

TI
VE

 L
IB

RA
RI

ES
 W

IT
H 

CV
ES

.NET

1%

2%

6%

NODE TOTAL



332021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

HOW LONG DOES IT TAKE YOU TO REACH THESE REMEDIATION MILESTONES?BY SEVERITY

Some vulnerabilities obviously present more risk than others, with Critical and Major CVEs much more 

risky than Standard and Informational ones. Just under 5% of active Java libraries have Critical or Major 

CVEs—more than half of the total CVEs for the language (Figure 23). Critical or major CVEs are present in  

under 1% of active .NET libraries and just over 1% of active Node libraries.

BY LIBRARY AGE

It is obvious that less up-to-date libraries contain more CVEs on average than newer versions. What may 

be surprising is the speed at which risk increases. Looking at Java libraries in particular, the odds of a 

Critical or Major CVE being present in a library increases from 1% to 3% to 4% to 7% as library age 

progresses from one year old to four years old, spiking at 48% when the library is 15 years old (Figure 

24). Put another way, updating an old library is a quick way to significantly reduce organizational risk. It 

goes without saying that while CVEs in older libraries get resolved in later versions of the library, they 

remain unresolved in the older version where the CVE was found. 

CRITICAL MAJOR STANDARD INFORMATIONAL

%
 O

F 
AC

TI
VE

 L
IB

RA
RI

ES
 W

IT
H 

CV
ES

JAVA .NET NODE TOTAL

0.66% 0.68%

0.03% 0.03%
0.48%

3.38%

4.41%

0.49%
1.11% 1.10%

0.26%
0.52%

0.05%

4.32%

5.77%

Figure 23: Percentage of active libraries
with CVEs, by language and severity.



342021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

FALSE-POSITIVE RATES FOR TRADITIONAL SCA TOOLS

Owners of applications protected by Contrast OSS can easily determine which CVEs are present in inactive 

libraries and library classes, and therefore pose no risk to the organization. As noted, traditional SCA tools 

that simply return a list of CVEs present in an application produce a false positive every time they list a 

CVE in an unused part of the application.

The aggregate data shows that 17% of Critical and Major CVEs in Java applications, 15% in .NET 

applications, and 80% in Node applications are in inactive libraries or classes (Figure 25). Without this 

observability, organizations would spend significant time remediating vulnerabilities that introduce zero 

risk. For organizations with hundreds of applications, this can quickly tally into thousands of hours 

annually—which translates into development delays.

LI
KE

LI
HO

OD
 O

F 
A 

CR
IT

IC
AL

 O
R 

 M
AJ

OR
 C

VE

YEARS BEHIND

0%

10%

20%

30%

50%

40%

60%

0        1        2       3       4       5       6       7       8        9      10     11       12      13     14      15

1% 3%
4%

7%
8%

13% 12%
14%

16% 15%

20%

11%

25%

33%
21%

48%

Figure 24: Percentage of Java libraries
with critical and major CVEs, by
library age.



352021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

RESOLVING RISKY VULNERABILITIES, AND BEING READY FOR NEW ATTACKS

Taking care of vulnerabilities is what application security is all about, but not every vulnerability is created 

equal. Just as Critical and Major vulnerabilities rank ahead of other ones in terms of risk, CVEs in active 

classes that are a part of active libraries are the only ones that present risk to an organization. Again, full 

observability into active libraries and classes, library age, and unresolved CVEs is important to reduce risk 

and maximize efficiency.

That said, it should be noted that all CVEs that are logged are discovered by a very small number of 

volunteer security researchers—a group that is badly outnumbered by cyber criminals. In actuality, it is 

very likely that there are many more undiscovered vulnerabilities than discovered ones. While this report 

focuses on the risks we know about, it is important to remember that runtime protection is critical to 

prevent exploitation of unknown vulnerabilities.

% OF CVES THAT ARE FALSE POSITIVES

% OF CRITICAL AND MAJOR CVES THAT ARE FALSE POSITIVES

JAVA .NET NODE TOTAL

23%
17%

13%
15%

69%

80%

23%
18%

Figure 25: SCA false-positive rates for Java, .NET, and Node applications.



09  |  R ISK  LAY ER  5 :  L IC E NS ING  R ISK

Although open-source code is free to use, it is not always free to use without restriction. These restrictions are 

determined by the type of license associated with the library. Licenses fall into two categories: permissive and 

copyleft. Permissive licenses place no restriction on the use of the software and include Apache, the most 

common Java and .NET license, and MIT, the most common Node license (see Figure 26). 

Copyleft licenses, on the other hand, claim that the code is copyrighted and can only be used if the resulting 

software product is released as open source. This, of course, introduces significant operational risk for 

organizations. Including even one library that uses a copyleft license in a library’s dependency tree technically 

renders the entire library subject to copyleft restrictions, and libraries can potentially be mislabeled in this 

regard.8 

Versions of the General Public License (GPL) are the most popular copyleft licenses, and Contrast Labs rates all 

versions of GPL as high risk. Other copyleft licenses bring moderate risk according to Contrast Labs, including 

Lesser GPL (LGPL), Mozilla Public License (MPL), and Eclipse Public License (EPL).

Because of this risk, it is concerning that 69% of Java applications and 33% of Node applications have at 

least one high-risk license (Figure 27a and 27b). In addition, 95% of Java applications and 70% of Node 

applications have at least one license of unknown or variable risk. One specific copyleft license, GPL 2.0, is 

present in 35% of all applications. Although the .NET language tightly controls its licenses and its 

applications have no high- or moderate-risk licenses, 99% of organizations represented in the dataset have 

at least one application containing a high-risk license.

High-risk licenses are only used with 2% of Java libraries and a tiny fraction of 1% of Node libraries. It is 

entirely possible that the libraries associated with these licenses are inactive, and organizations may not 

even be aware that these licenses are in their applications. Yet, high-risk licenses pose significant risk, and 

this is yet another reason that full observability of the open-source software environment is critical for all 

organizations.

362021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT



Although open-source code is free to use, it is not always free to use without restriction. These restrictions are 

determined by the type of license associated with the library. Licenses fall into two categories: permissive and 

copyleft. Permissive licenses place no restriction on the use of the software and include Apache, the most 

common Java and .NET license, and MIT, the most common Node license (see Figure 26). 

Copyleft licenses, on the other hand, claim that the code is copyrighted and can only be used if the resulting 

software product is released as open source. This, of course, introduces significant operational risk for 

organizations. Including even one library that uses a copyleft license in a library’s dependency tree technically 

renders the entire library subject to copyleft restrictions, and libraries can potentially be mislabeled in this 

regard.8 

Versions of the General Public License (GPL) are the most popular copyleft licenses, and Contrast Labs rates all 

versions of GPL as high risk. Other copyleft licenses bring moderate risk according to Contrast Labs, including 

Lesser GPL (LGPL), Mozilla Public License (MPL), and Eclipse Public License (EPL).

Because of this risk, it is concerning that 69% of Java applications and 33% of Node applications have at 

least one high-risk license (Figure 27a and 27b). In addition, 95% of Java applications and 70% of Node 

applications have at least one license of unknown or variable risk. One specific copyleft license, GPL 2.0, is 

present in 35% of all applications. Although the .NET language tightly controls its licenses and its 

applications have no high- or moderate-risk licenses, 99% of organizations represented in the dataset have 

at least one application containing a high-risk license.

High-risk licenses are only used with 2% of Java libraries and a tiny fraction of 1% of Node libraries. It is 

entirely possible that the libraries associated with these licenses are inactive, and organizations may not 

even be aware that these licenses are in their applications. Yet, high-risk licenses pose significant risk, and 

this is yet another reason that full observability of the open-source software environment is critical for all 

organizations.

372021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

% OF LIBRARIES % OF APPLICATIONS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

AP
AC

HE-
2.0 MIT ISC

EP
L-1

.0

EP
L-2

.0

CD
DL

-1.
1

GP
L-2

.0
-O

NLY

BS
D-

3-
CL

AU
SE

LG
PL

-2
.1-

ON
LY

BS
D-

2-
CL

AU
SE

41%

79%
80%

22%

2% 2% 2% 1% 1% 1% 1% 1%

48%
49%

35% 36%

21%

31%
35%

6%

Figure 26: Percentage of applications and
libraries with the top 10 open-source licenses.



382021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

Figure 27a: License usage by risk level and language.

JAVA LICENSE USAGE

HIGH

MODERATE

LOW

UNKNOWN/VARIES

0% 20% 40% 60% 80% 100%

% OF APPLICATIONS% OF LIBRARIES % OF ORGANIZATIONS

% OF APPLICATIONS% OF LIBRARIES % OF ORGANIZATIONS

.NET LICENSE USAGE

HIGH

MODERATE

LOW

UNKNOWN/VARIES

0% 20% 40% 60% 80% 100%

2%

8%

67%

22%

69%
99%

81%
100%

100%
98%

100%

100%

95%



Figure 27b: License usage by risk level and language.

392021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

% OF APPLICATIONS% OF LIBRARIES % OF ORGANIZATIONS

NODE LICENSE USAGE

HIGH

MODERATE

LOW

UNKNOWN/VARIES

0% 20% 40% 60% 80% 100%

100%
99%

92%
70%

33%

9%

1%

28%

52%

% OF APPLICATIONS% OF LIBRARIES % OF ORGANIZATIONS

LICENSE USAGE

HIGH

MODERATE

LOW

UNKNOWN/VARIES

0% 20% 40% 60% 80% 100%

100%
99%

92%
70%

33%

1%

28%

52%

9%



10  |  C O NCLUS IO N

The 2021 Contrast Labs Open-source Security Report leverages data from real applications to identify 

trends in the quest to secure the libraries that form an integral part of most applications today. The report 

highlights five layers of risk faced by every organization that develops software: active and inactive 

libraries, active and inactive classes, library age, vulnerabilities in libraries, and licensing risk.

An increasingly efficient software factory is the engine behind the ongoing digital transformation that is 

remaking how companies operate and interact with their customers. This long-standing trend accelerated 

its pace during the COVID-19 pandemic. As many as 79% of executives who responded to one survey 

said that the pandemic had resulted in increased budgets for digital transformation.9 Another survey found 

that consumers are three times more likely to say that 80% of their customer interactions are digital in 

nature than before the coronavirus.10 

From an application security perspective, open-source libraries are one of the four elements of the 

software supply chain, each of which must receive equal and critical priority:

 • What you write: Custom code developed in-house

 • What you build with: Software development tools

402021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT



factory and introduce significant risk. The fact that so many applications have a library with a high-risk 

license attests to the fact that too many organizations have an incomplete view of what libraries exist in 

their applications. This means that they are unable to provide the protection that those applications need.

KEY TAKEAWAYS

In this context, it is important that organizations take a holistic, methodical approach to open-source 

security. Factors they should consider include:

 • Set comprehensive policies for libraries, frameworks, and licensing. Defining and   

  enforcing limitations on the components allowed in an application can prevent libraries  

  with GPL licenses or outdated libraries from being added. Likewise, policies for updating  

  existing libraries can decrease the odds of vulnerabilities and save extra work in the   

  future.

 • Establish continuous observability. As we have said repeatedly, full visibility into which  

  libraries and classes are active, how old they are, what CVEs they hold, and what   

  licenses they require is critical for prioritization of remediation and reduction of risk.   

  Since only active libraries and classes pose risk, this knowledge significantly narrows the  

  scale of needed remediation. 

 

 • Embed controls in continuous integration/continuous deployment (CI/CD) processes. 

  This can keep risky libraries and licenses from entering an application inadvertently by

  automating policy enforcement. 

As the economy and public infrastructure become increasingly reliant on software, applications are an 

increasingly attractive target for cyber criminals. For the components of that software that come from 

open-source libraries, it is critical that organizations have the detailed data they need to make their 

software both secure and functional. This level of visibility and control is only available with tools from 

Contrast Security. Organizations that leverage these tools are increasing the efficiency of their 

development efforts while making them more secure.

412021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

 • What you buy: Off-the-shelf Software-as-a-Service (SaaS) applications

 • What you use: Third-party libraries 

If any of these elements is missing from an organization’s application security strategy, the other elements are 

weakened, and risk is increased. When it comes to open-source libraries, they inject code into the software 

WHAT YOU WRITE11

•   60% release code multiple times per day;
     80% do so multiple times per week
•   79% still under pressure for more speed
•   55% skip security processes to meet SDLC
     deadlines
•   Less than 50% of application security
     integrated with CI/CD tools

WHAT YOU BUILD WITH

•   Developers have access to literally 1,000+
     software development tools
•   Work-from-home environments create
     greater security risks for thousands of pieces
     of software running with high privilege

WHAT YOU BUY

•   SaaS market to grow 25% by 202212

•   70% indicate “uninformed or misleading
     claims about security” in a SaaS solution
     were cause of dissatisfaction13

•   95% of businesses host sensitive data in
     SaaS solutions14

WHAT YOU USE

•   90% of applications rely on third-party
     libraries that comprise up to 70% of code15

•   Applications on GitHub have an average of 200
     dependencies16

•   73% of applications have a vulnerability
     traceable to third-party code

Figure 28: There are four primary components to the “assembly line” in the software factory.

The 2021 Contrast Labs Open-source Security Report leverages data from real applications to identify 

trends in the quest to secure the libraries that form an integral part of most applications today. The report 

highlights five layers of risk faced by every organization that develops software: active and inactive 

libraries, active and inactive classes, library age, vulnerabilities in libraries, and licensing risk.

An increasingly efficient software factory is the engine behind the ongoing digital transformation that is 

remaking how companies operate and interact with their customers. This long-standing trend accelerated 

its pace during the COVID-19 pandemic. As many as 79% of executives who responded to one survey 

said that the pandemic had resulted in increased budgets for digital transformation.9 Another survey found 

that consumers are three times more likely to say that 80% of their customer interactions are digital in 

nature than before the coronavirus.10 

From an application security perspective, open-source libraries are one of the four elements of the 

software supply chain, each of which must receive equal and critical priority:

 • What you write: Custom code developed in-house

 • What you build with: Software development tools



factory and introduce significant risk. The fact that so many applications have a library with a high-risk 

license attests to the fact that too many organizations have an incomplete view of what libraries exist in 

their applications. This means that they are unable to provide the protection that those applications need.

KEY TAKEAWAYS

In this context, it is important that organizations take a holistic, methodical approach to open-source 

security. Factors they should consider include:

 • Set comprehensive policies for libraries, frameworks, and licensing. Defining and   

  enforcing limitations on the components allowed in an application can prevent libraries  

  with GPL licenses or outdated libraries from being added. Likewise, policies for updating  

  existing libraries can decrease the odds of vulnerabilities and save extra work in the   

  future.

 • Establish continuous observability. As we have said repeatedly, full visibility into which  

  libraries and classes are active, how old they are, what CVEs they hold, and what   

  licenses they require is critical for prioritization of remediation and reduction of risk.   

  Since only active libraries and classes pose risk, this knowledge significantly narrows the  

  scale of needed remediation. 

 

 • Embed controls in continuous integration/continuous deployment (CI/CD) processes. 

  This can keep risky libraries and licenses from entering an application inadvertently by

  automating policy enforcement. 

As the economy and public infrastructure become increasingly reliant on software, applications are an 

increasingly attractive target for cyber criminals. For the components of that software that come from 

open-source libraries, it is critical that organizations have the detailed data they need to make their 

software both secure and functional. This level of visibility and control is only available with tools from 

Contrast Security. Organizations that leverage these tools are increasing the efficiency of their 

development efforts while making them more secure.

422021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT



Jeff brings more than 20 years of security leadership experience as 

Co-Founder and Chief Technology Officer of Contrast. Previously, Jeff 

was Co-Founder and Chief Executive Officer of Aspect Security, a 

successful and innovative application security consulting company 

acquired by Ernst & Young. Jeff is also a founder and major contributor 

to OWASP, where he served as Global Chairman for eight years and 

created the OWASP Top 10, OWASP Enterprise Security API, OWASP 

Application Security Verification Standard, XSS Prevention Cheat Sheet, 

and many other widely adopted free and open projects. Jeff has a BA 

from the University of Virginia, an MA from George Mason, and a JD 

from Georgetown.

JEFF WILLIAMS
CTO AND CO-FOUNDER, 
CONTRAST SECURITY

David is an experienced application security professional with over 20 

years in cybersecurity. In addition to serving as the chief information 

security officer, David leads the Contrast Labs team that is focused on 

analyzing threat intelligence to help enterprise clients develop more 

proactive approaches to their application security programs. 

Throughout his career, David has worked within multiple disciplines in 

the security field—from application development, to network 

architecture design and support, to IT security and consulting, to 

security training, to application security. Over the past decade, David 

has specialized in all things related to mobile applications and securing 

them. He has worked with many clients across industry sectors, 

including financial, government, automobile, healthcare, and retail. 

David is an active participant in numerous bug bounty programs. 

432021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

CONTR IB UTO RS

DAVID LINDNER
CHIEF INFORMATION 
SECURITY OFFICER,
CONTRAST SECURITY



Brian possesses nearly 20 years of experience in various roles in IT 

and over a decade in application development and security. In addition 

to teaching a full load of classes at Union University, Brian serves as a 

part-time management consultant and advisor for Contrast Labs. He 

worked on the Trustworthy Computing team at Microsoft and served 

as a project lead and active contributor for SAMM v1.1-2.0 and 

OWASP Top 10 2017. He is a popular speaker at numerous 

conferences and online events, having presented at InfoSec World, 

Cloud Security World, and numerous OWASP conferences and 

meetings. Brian is also an author of various papers and is currently 

researching writing a book on application security. He holds a long list 

of cybersecurity and IT certifications as well as a master in business 

administration and bachelors in computer science from Union 

University.

Katharine is a driving force in developing and building data analytics 

frameworks for Contrast—including Contrast Labs—and turning data 

into actionable narratives and insights for internal and external 

customers. Katharine worked as an analyst, consultant, and project 

manager in both private and nonprofit organizations. Before launching 

a career in data science, Katharine worked for three years as a 

mathematics teacher in the Teach for America program. Katharine 

holds undergraduate and graduate degrees from The Johns Hopkins 

University.

BRIAN GLAS
ASSISTANT PROFESSOR OF 
COMPUTER SCIENCE,
UNION UNIVERSITY

KATHARINE WATSON
SR. DATA ANALYST AND 
DATA SCIENTIST,
CONTRAST SECURITY

442021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT



Patrick founded and serves as the editor in chief for the Inside Appsec 

podcast and leads the content marketing and PR/communications 

team at Contrast. He has more than a decade and a half of experience 

in various senior marketing and research roles within the cybersecurity 

sector and is the recipient of numerous corporate and industry awards. 

After leaving the corporate world to start his own agency, Patrick 

joined Fortinet to lead content marketing and research. His many 

duties included serving as the editor in chief for The CISO Collective. 

Patrick’s roots in cybersecurity go back to Symantec, where he spent 

nearly a decade in senior marketing roles of increasing scope and 

responsibility. While at Symantec, Patrick served as the editor in chief 

for CIO Digest, an award-winning digital and print publication 

containing strategies and insights for the technology executive.

MHM ContentSource specializes in marketing research and writing 

projects for clients across the technology sector. Mark has 15 years of 

experience in research and content marketing across the technology 

sector, as both an employee and a consultant. He has authored 

numerous research reports, white papers, and magazine features and 

produced dozens of marketing videos and a podcast series. His work 

has been published by leading technology brands such as Symantec, 

LivePerson, PRO Unlimited, Finastra, Fortinet, Lastline, and Contrast 

Security, among others.

MARK MULLINS
FOUNDER AND PRINCIPAL,
MHM CONTENTSOURCE

PATRICK SPENCER, 
PH.D.
EDITOR IN CHIEF, 
INSIDE APPSEC PODCAST

HEAD OF CONTENT AND 
PR/COMMUNICATIONS, 
CONTRAST SECURITY

452021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT



Pauline oversees the product management strategy and execution for 

Contrast OSS. She spent over a decade developing applications in 

Java, .NET, and Node.js and has served in various team and project 

leadership positions throughout her career. The breadth of these 

experiences gives Pauline a keen understanding of the opportunities 

and risks that open-source code poses. She holds a computer science 

degree from Queens University in Belfast.

PAULINE LOGAN
PRODUCT MANAGER 
CONTRAST SECURITY

462021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

Joe Coletta oversees product marketing strategy and execution for 

Contrast OSS and is focused on open-source security. Joe has worked 

in the application security space for over a decade and has a 

comprehensive view of all aspects, starting in customer success 

before migrating to go-to-market strategy. Joe leverages his 

consultative experience with application security practitioners to 

highlight solutions that solve key customer problems.

JOE COLETTA
SR. PRODUCT MARKETING MANAGER
CONTRAST SECURITY



472021 CONTRAST LABS OPEN-SOURCE SECURITY REPORT

1 Sage McEnery, “How much computer code has been written?” Medium, July 18, 2020.
2 Shivam Srivastava, et al., “Developer Velocity: How software excellence fuels business performance,” McKinsey & Company, April 20, 2020.
3 Ibid.
4 Josephine Wolff, “The SolarWinds Hack Is Unlike Anything We Have Ever Seen Before,” Slate, December 18, 2020.
5 “Data Breach Investigations Report, 2020,” Verizon, April 2020.
6 Forrester found a 40% increase in the use of open-source code in one year; see Amy DeMartine and Jennifer Adams, 

 “Application Security Market Will Exceed $7 Billion by 2023,” Forrester, updated March 29, 2019.
7 “Securing the world’s software,” GitHub Octoverse, accessed March 26, 2021.
8 Thomas Claburn, “Ruby off the Rails: Code library yanked over license blunder, sparks chaos for half a million projects,” The Register, March 25, 2021.
9 John Koetsier, “97% Of Executives Say Covid-19 Sped Up Digital Transformation,” Forbes, September 10, 2020.
10 “How COVID-19 has pushed companies over the technology tipping point—and transformed business forever,” McKinsey & Company, October 5, 2020.
11 “The State of DevSecOps Report,” Contrast Security, November 2020.
12“Gartner Forecasts Worldwide Public Cloud Revenue to Grow 6.3% in 2020,” Gartner, July 23, 2020.
13 Rich Cracknell, et al., “Securing software as a service,” McKinsey & Company, September 2019.
14 Alex Powell, “The biggest mistakes in SaaS security,” Cloud Security Alliance, February 8, 2021.
15 Manolo Edge, “3rd party libraries, are they a risk?” DEV, January 15, 2020.
16 Cathy Zhou, “The State of the Octoverse 2019,” GitHub, November 6, 2019.

https://medium.com/modern-stack/how-much-computer-code-has-been-written-c8c03100f459
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-how-software-excellence-fuels-business-performance
https://slate.com/technology/2020/12/solarwinds-hack-malware-active-breach.html
https://enterprise.verizon.com/resources/reports/dbir/
https://www.forrester.com/report/Application+Security+Market+Will+Exceed+7+Billion+By+2023/-/E-RES144054
https://octoverse.github.com/static/github-octoverse-2020-security-report.pdf
https://www.theregister.com/2021/03/25/ruby_rails_code/
https://www.forbes.com/sites/johnkoetsier/2020/09/10/97-of-executives-say-covid-19-sped-up-digital-transformation/?sh=438ce51e4799
https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/how-covid-19-has-pushed-companies-over-the-technology-tipping-point-and-transformed-business-forever
https://www.contrastsecurity.com/hubfs/DocumentsPDF/The-State-of-DevSecOps_Report_Final.pdf?hsCtaTracking=a203b826-65b7-4b82-85de-60d5c1fce5e8%7C920d6cec-5ad9-4b95-8e2e-c2c1c6ec7660
https://www.gartner.com/en/newsroom/press-releases/2020-07-23-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-6point3-percent-in-2020
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/Risk/Our%20Insights/Securing%20software%20as%20a%20service/Securing-software-as-a-service-vF.pdf
https://cloudsecurityalliance.org/blog/2021/02/08/how-to-avoid-the-biggest-mistakes-with-your-saas-security/
https://dev.to/nombrekeff/3rd-party-libraries-are-they-a-risk-2emp
https://github.blog/2019-11-06-the-state-of-the-octoverse-2019/


Contrast Security is the world’s leading provider of security technology that enables software applications to protect themselves against 
cyberattacks, heralding the new era of self-protecting software. Contrast's patented deep security instrumentation is the breakthrough 
technology that enables highly accurate assessment and always-on protection of an entire application portfolio, without disruptive 
scanning or expensive security experts. Only Contrast has sensors that work actively inside applications to uncover vulnerabilities, 
prevent data breaches, and secure the entire enterprise from development, to operations, to production.




